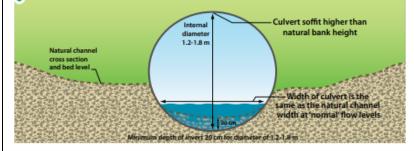

Full Isolation by Diversion – Plan

NOTES:

- Full isolation over pumping / siphon. A whole section of the channel is isolated using barriers that span the full width of the river. This keeps a stretch of the river dry and the water is transferred downstream of the works area by mechanical assistance (pumping or siphon). The pump and associated pipework need not be located in the isolated area.
- This method is the preferred method for channel diversion during instream works , for example, during watercourse crossing / culvert construction. However, the pumping equipment deployed must be capable of the surface water feature discharge rate, including back up equipment and fail safe protocols.

NOTES:


- Full isolation temporary diversion channel. A whole section of the channel is isolated and kept dry, and the water is transferred downstream of the works area by excavating a temporary open channel.
- This is the less preferred method due to the destructive nature of constructing temporary diversion channels. However, in some instances where discharge rates are high, this method will negate the requirement for large volume pumping and associated inherent risks.

SEPA (2009) Engineering in the Water Environment Good Practice Guide – Temporary Construction Methods.

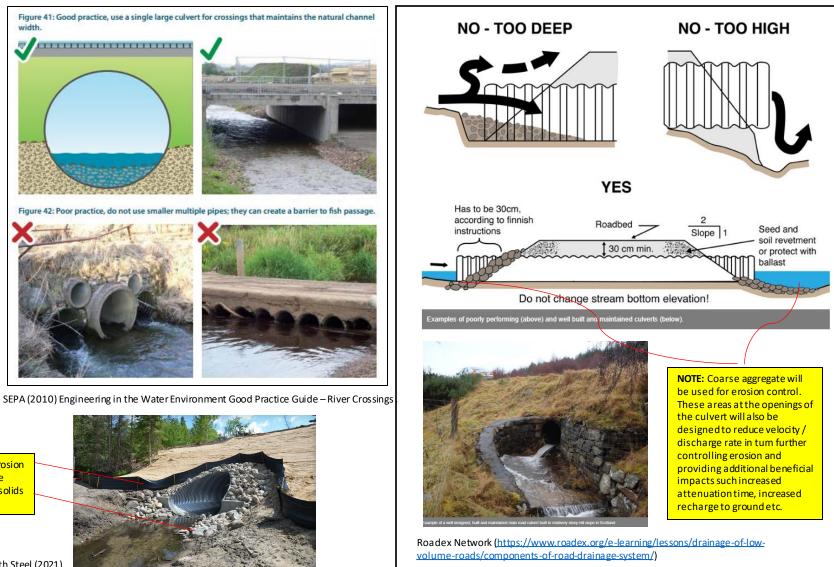
Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	vn By: Sven Klinkenbergh Principal Environmental Consultant	
	Client:	JOD / Mercury Renewables			
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 1 Overpumping– General Considerations	Revision:	02			

Closed Culvert Good Practice Design Considerations – Section

Figure 40: Good practice, culverts showing invert buried below bed level allowing the natural bed level, slope and material to be maintained. Culvert also maintains natural channel width. Culvert soffit higher than natural height 1.2-1.8 m bank height Natural channel ross section nd bed level -Width of culvert is the same as the natural channel width at 'normal' flow levels Minimum depth of invert 20 cm for height of 1.2 1.8 m

SEPA (2010) Engineering in the Water Environment Good Practice Guide – River Crossings.

NOTE: Coarse aggregate has been used for erosion control. Silt fencing has been used to mitigate against the entrainment and mobilization of solids during the construction process

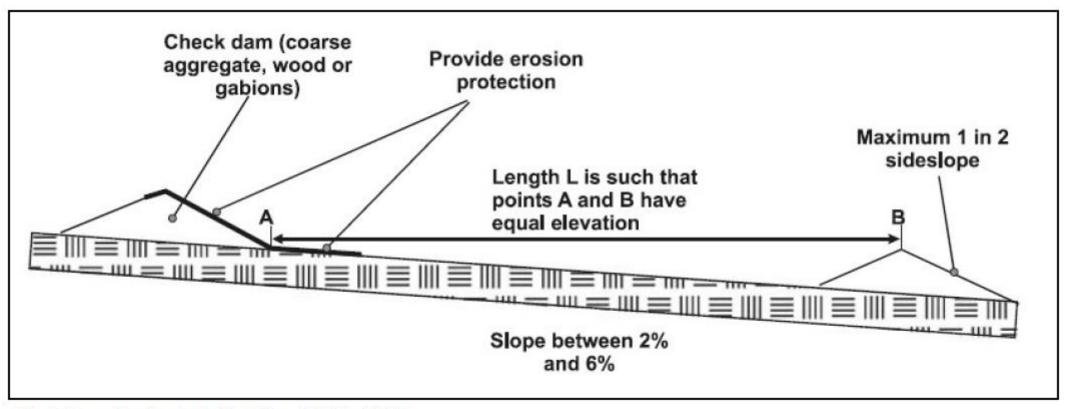

Closed Culvert Good & Bad Examples - Section

width.

₹.

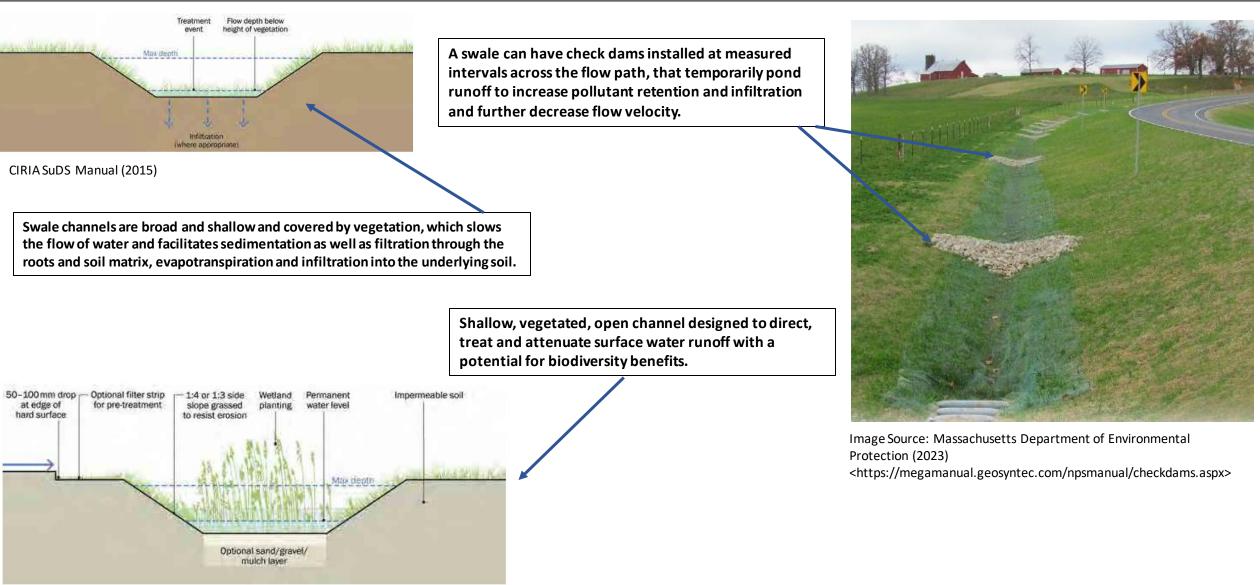
TrueNorth Steel (2021)

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
rinough Green Energy – while rann	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 2 Culverts – General Considerations	Revision:	02			


Example of a clear-span bridge, which retains the existing river channel and column set back from the river bank (National Roads Authority, 2008)

Example of a clear-span bridge which retains the existing river channel, abutments are set back from the river bank (AT&F, 2022)

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	DOL		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	ѕк	
Appendix 9.4 – Conceptual & Information Graphics – Tile 3 Examples of Clear Span Bridge	Revision:	02			


		-		-	
Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh	
ough Green Energy – Wind Farm	Client:	DOL		Principal Environmental Consultant	
re Name:	Date:	03/05/23	Reviewed By:	SK	
pendix 9.4 – Conceptual & Information Graphics – Tile 3 Amples of Clear Span Bridge	Revision:	02			

Constructed Drain and Check Dams – Section

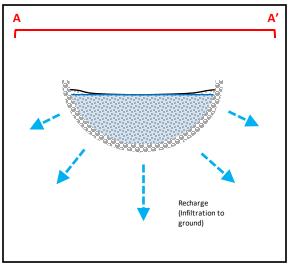
Check Dam Design Consideration (CIRIA, 2004)

Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Firlough Green Energy – Wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 4 Check Dams – General Considerations	Revision:	02			

CIRIA SuDS Manual (2015)

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Colleen McClung	
	Client:	DOL		Graduate Project Scientist	
Figure Name:	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh	
Appendix 9.4 – Conceptual & Information Graphics – Tile 5 Check Dams – General Considerations	Revision:	02		Principal Environmental Consultant	

NOTES:


- The extensive use of check dams is recommended for the following reasons:
 Management of runoff in terms of reducing flow velocity and minimising
 - in channel erosion, or erosion at drainage outfalls. • Maximise attenuation of runoff with a view to enhancing runoff quality
 - i.e. settlement of suspended solids. o Maximise attenuation of runoff with a view to reducing the hydrological
 - response to rain fall at the site.
 Maintain or improve the site hydrological/hydrogeological regime with a view to maximising recharge to ground and increasing groundwater levels locally. This is particularly relevant for peatland areas.
- Check dams will be constructed with the following features and specifications:
 A low flow pipe or small orifice to allow for low flows through the check
 - dam. • Check dams will be permanent (life of development) and will be constructed with crushed rock with appropriate geo-chemistry (local) for example; coarse aggregate (100-600 mm). Wooden boards, gabions can also be used.
 - o Erosion protection and energy dissipaters (cobbles / boulder 100-150mm diameter) which will extend approximately 1.2 – 1.8m downgradient of the dam and applied to both the base and side walls of the drain / swale.
 - Erosion control can be enhanced with the in-combination use of geotextile base layers (but consider low flow through).
 - It is recommended that the drainage channels / swales are entirely lined with coarse aggregate / erosion control. This will enhance mitigation in terms of attenuation, erosion control, and recharge to ground. Alternatively, allowing drains / swales to vegetate will achieve similar effects.

Constructed Drain and Check Dams – Section A-A'

DRAIN FLOW DRIRECTION

B'

Constructed Drain and Check Dams – Section B-B'

Site Name: Eislough Groon Energy Wind Form	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Firlough Green Energy – Wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 6 Check Dams – General Considerations	Revision:	02			

Erosion Control

' A'

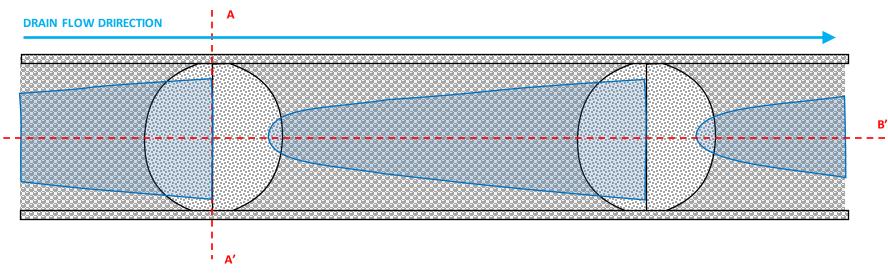
Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale.

Constructed Drain and Check Dams – Plan View

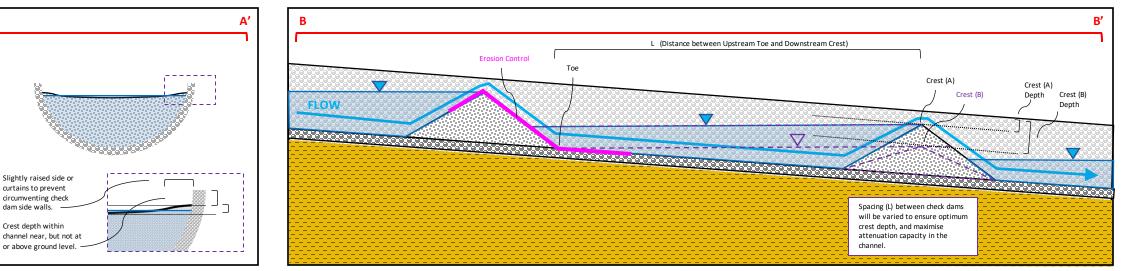
NOTES:

· It is recommended to align the elevation of the upgradient toe and downgradient crest. Therefore the spacing (L) of check dams will be dependent on the on the slope angle of a particular length (L) of drainage, whereby; on shallow slopes check dams will have larger spacing and on steeper slopes (up to 15 degrees *) spacing will be smaller.

· The purpose of aligning the toe and crest of respective check dams is recommended with a view to maximising pooling, or attenuation capacity of the drainage channel. The conceptual section presented here is designed with the downgradient crest (A) higher than the upgradient toe, as opposed to the crest (B) which is aligned with the toe. The purpose of this is to further enhance attenuation capacity at the dam, and to maximise hydraulic head ** and infiltration / percolation of runoff to ground water (recharge). However, this approach has limitations including for the potential to adversely impact undermine the integrity of the upgradient dam through erosion etc. or the downgradient dam through loading / excess weight. Mitigation measures including material selection, erosion control, and variable flow (V-notch) *** will be used where relevant to mitigate such impacts.

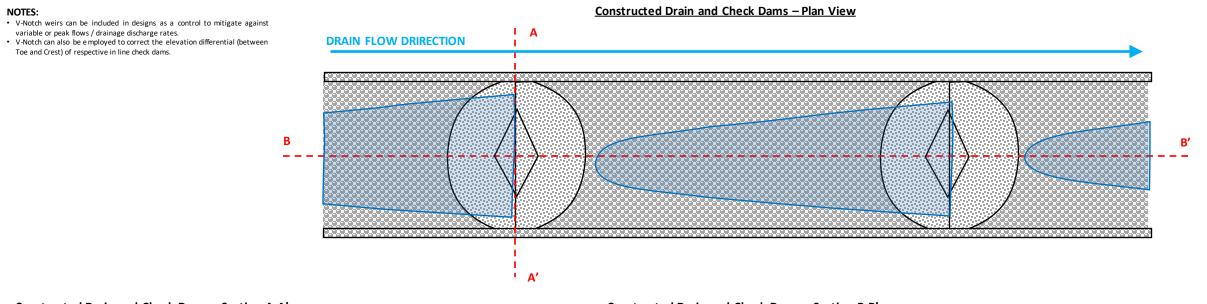

(*) Check dams are recommended for drainage channels with slope angle up to 15 degrees. Drainage and runoff on steeper slopes (>15 degrees) will require different drainage velocity control features, for example; rock ripraps.

• (**) Attenuation of run off in drainage channels is an opportunity to enhance recharge and reduce the hydrological response to rainfall at the site. However, detailed design will consider environmental and geological constraints, for example; enhanced re charge is not recommended in areas of elevated or high landslide susceptibility or risk.

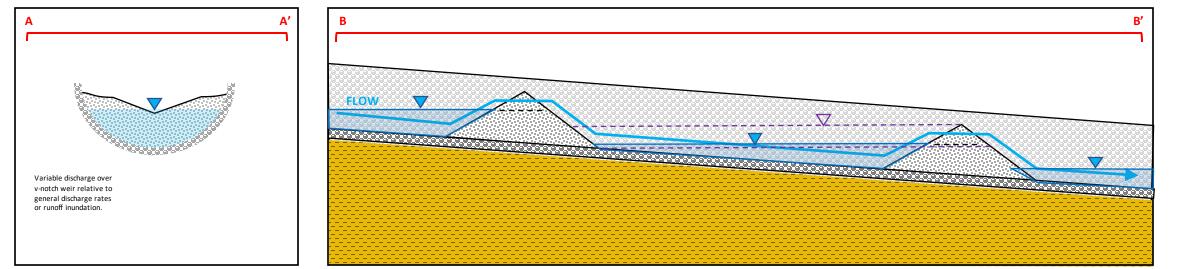

• (***) V-Notch weirs discussed Conceptual Design – Drainage Infrastructure Check Dams - With Variable Flow Rate / V - Notch Weirs

dam side walls.

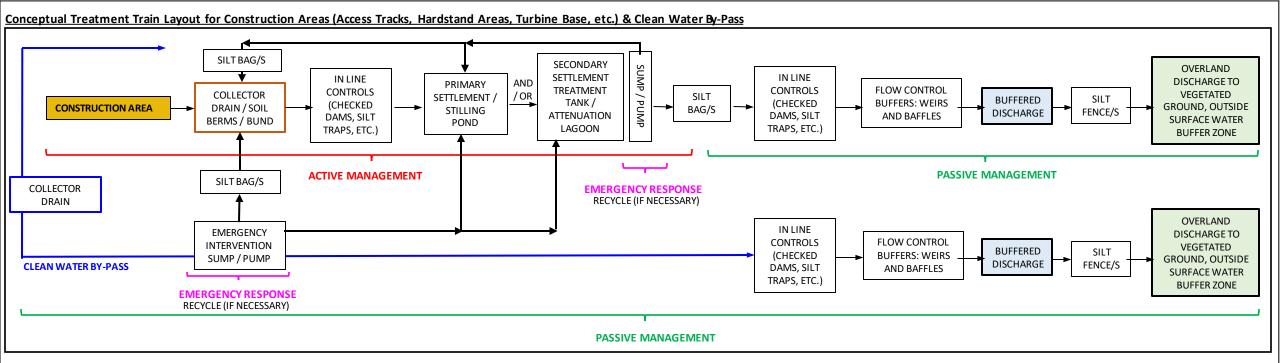
Constructed Drain and Check Dams – Section A-A'


Constructed Drain and Check Dams – Section B-B'

Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Firlough Green Energy – Wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 7 Check Dams – Design Specifications and Considerations	Revision:	02			

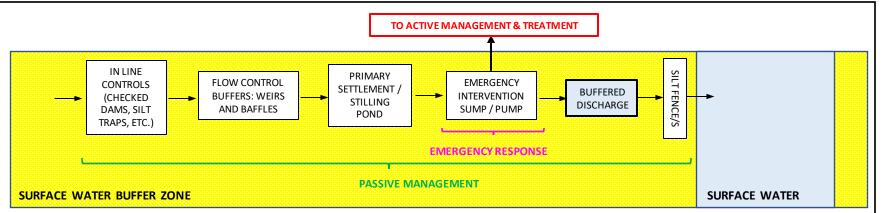

Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale.

Constructed Drain and Check Dams – Plan View



Constructed Drain and Check Dams – Section A-A'

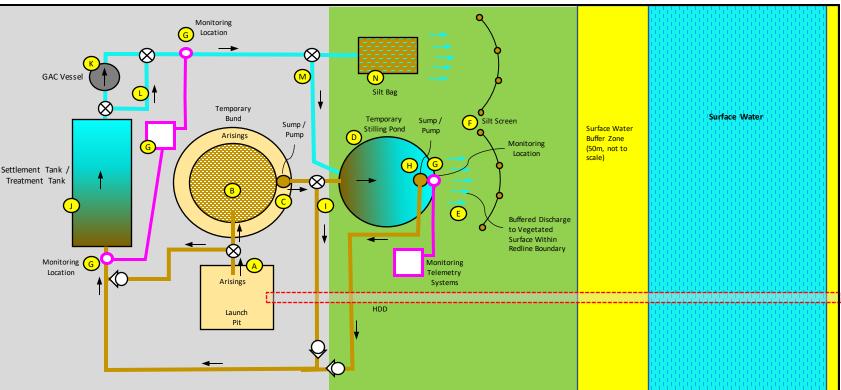
Constructed Drain and Check Dams – Section B-B'

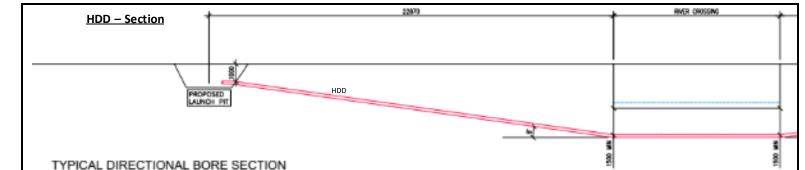

Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Firlough Green Energy – Wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 8 Check Dams – With Variable Flow Rate / V – Notch Weirs	Revision:	02			

Conceptual Treatment Train Layout for Construction Areas & Associated Infrastructure within Surface Water Buffer Zones

NOTES:

- Wherever possible, outfalls will be positioned outside of Surface Water Buffer Zones.
- For a reas of the development footprint within Surface Water Buffer Zones, in line measures such as silt screens will be over specified e.g. double / triple silt screens, and access to emergency intervention sump / pumps will be facilitated through design and/or emergency response.
- Quality of runoff entering buffer zones will be good i.e. suspended solids <25 mg/l. Where runoff quality is poor, emergency response will be to use an intervention sump / pump and pump divert runoff to an area of the drainage network where it will be treated before redistribution and discharge.

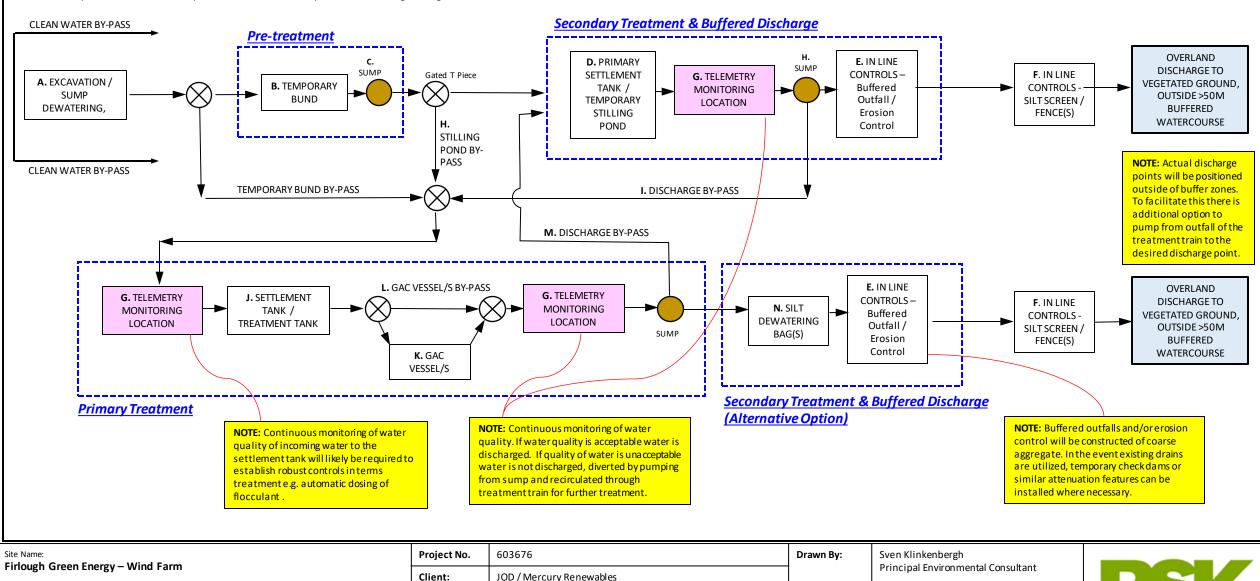

Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Firlough Green Energy – Wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 9 Water Treatment Train Layouts	Revision:	02			


NOTES:

- This methodology and example scenario is designed with a view to managing Horizontal Drilling arisings, but can be applied to all scenarios whereby active dewatering, treatment, or management of construction waters is required.
- Contaminated water arising from construction works, namely; excavations, drilling and temporary stockpiling, will be contained and treated prior to release or discharge. The schematic presented here is a conceptual model of measures implemented to manage arisings and runoff; A. Arisings from the launch / reception pit, or any other significant excavation (e.g., cable joint bays),

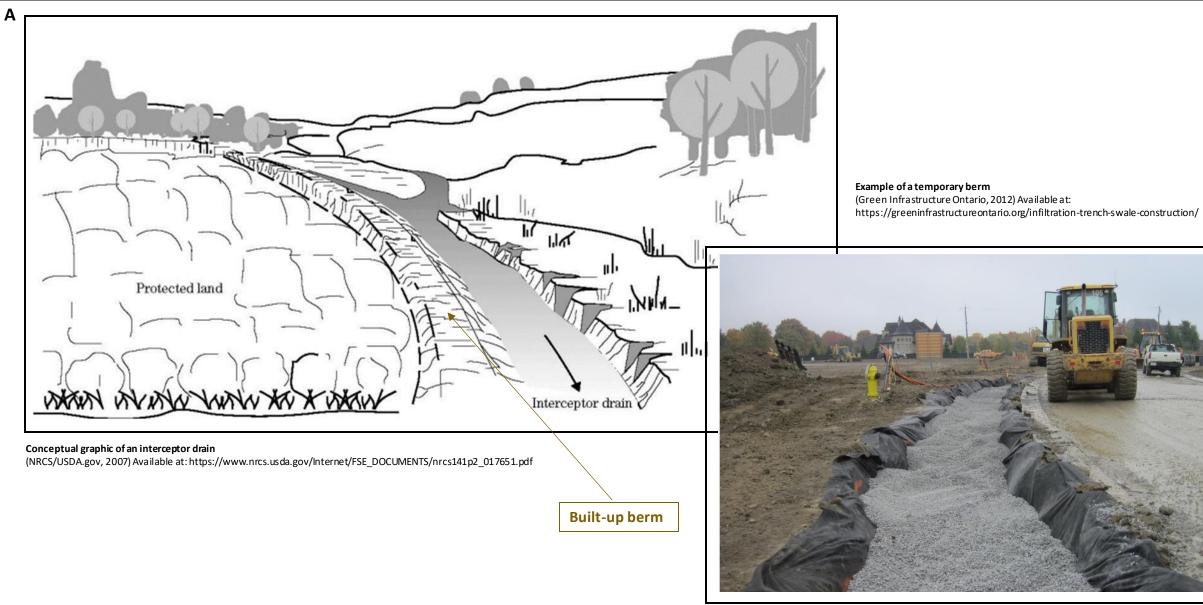
will be directed the treatment train.

- B. Arising control area i.e., a temporary bund. Gross solids will be temporarily deposited here. Water arsing with the material will be allowed to drain to sump.
- C. Sump / Pump. Sump will discharge by gravity / pumped to stilling pond.
- D. Temporary stilling pond. This can be constructed using soils for bunding in combination with an impermeable liner.
- E. The outfall from the stilling pond will be buffered (coarse aggregate) to dissipate energy and diffuse discharging water.
- F. Silt Screen. A silt screen will be in place down gradient of the Stilling Pond outfall. This is a precautionary measure to mitigate peak loads or surcharges in the system.
- G. Monitoring Location/s. Discharge quality will be monitored in real time using telemetry systems. Monitoring of discharge quality will be carried out at the outfall of the stilling pond i.e., before being actually discharged to surface vegetation or surface water (licenced).
- H. Sump / Pump. Discharge By-Pass. If water discharging from the stilling pond exceeds quality reference limits water will be diverted (pumped) from the stilling pond to the settlement / treatment tank.
- I. Stilling Pond By-Pass. Similar to Discharge By-Pass, if conditions dictate water can be diverted directly to Settlement / Treatment Tank.
- J. Settlement / Treatment Tank. A settlement tank will in line and ready to use if required i.e., water quality at stilling pond outfall fails to meet quality reference limits. The tank will be equipped with treatment systems which will be activated as the need arises, for example; very fine particles which are very slow to settle can be treated with a flocculant agent to promote settlement of particles.
- K. GAC Vessel/s. As a precautionary measure, GAC (Granulated Activated Carbon) vessel/s will be in line and ready to use if required. GAC vessels are used to filter out low concentrations of hydrocarbons. Significant hydrocarbon contamination is only envisaged under accidental circumstances. If a hydrocarbon spill does occur, normal operations will pause and the treatment train will be utilised to remediate captured contaminated runoff.
- L. GAC Vessel By-Pass. If the quality of the water is acceptable in terms of hydrocarbon contamination.
- M. Treated water will be discharge by gravity / pump to the stilling pond for additional clarification. monitoring and buffered discharge to vegetated area.
- N. Silt Bag. A silt bag can be used as alternative to stilling ponds. Ho wever, silt bags must only be used as primary method in lower risk areas i.e., outside of buffer zones, etc. Stilling ponds will be the primary method (D, N) is circumstances where risk is elevated, however a gate vale and silt bag can be included in the treatment train and used as an emergency discharge route in the event that the stilling pond needs remediation or maintenance.
- In all instances, stilling ponds (D), Silt Bags (N) and outfalls (E) will be situated outside of surface water buffer zones. At many locations, particularly at HDD locations works will be within buffer zones. In these instances, the treatment train can be positioned upgradient along the road where discharge to vegetated areas / roadside drains can be managed.

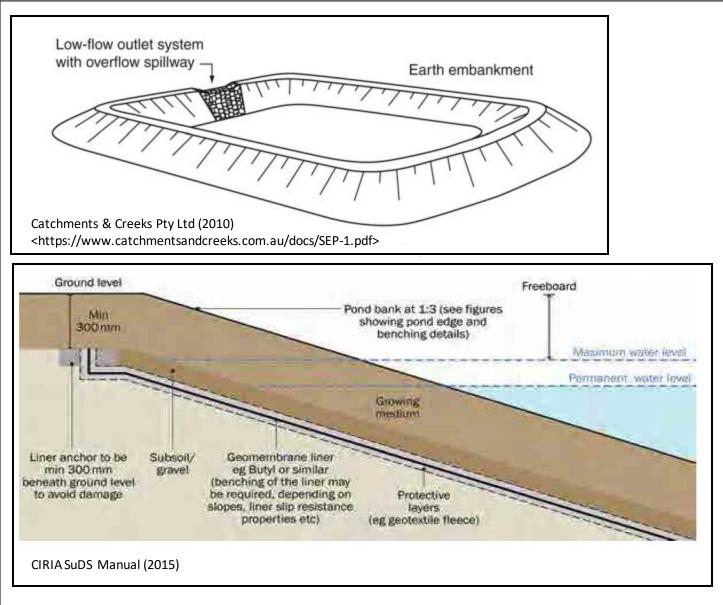

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
rilougii Green Energy – wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 10 Treatment Train Layout for Active Runoff Management (e.g. HDD)	Revision:	02			

Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale.

Conceptual Treatment Train Layout for HDD – Plan View


Conceptual Dewatering and Treatment Train Flow Diagram

Contaminated water arising from construction works, namely; excavations and temporary stockpiling, will be contained and treated prior to release or discharge. The schematic presented here is a conceptual model of measures implemented to manage arisings and runoff.



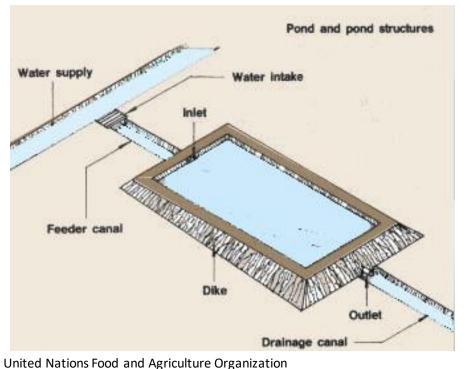

SK

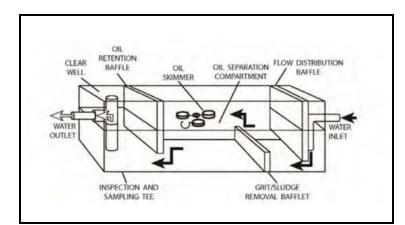
Figure Name:	Date:	03/05/23	Reviewed By:
Appendix 9.7 – Conceptual & Information Graphics – Tile 11	Revision:	02	
Conceptual Dewatering and Treatment Train Flow Diagram	Revision.		

Site Name: Firlough Green Energy – Wind Farm	Project No. Client:	603676 JOD	Drawn By:	Colleen McClung Graduate Project Scientists	
Figure Name:	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh	
Appendix 9.4 – Conceptual & Information Graphics – Tile 12 Interceptor Drain & Spoil berms	Revision:	02		Principal Environmental Consultant	

<a>https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x 6708e/x6708e01.htm>

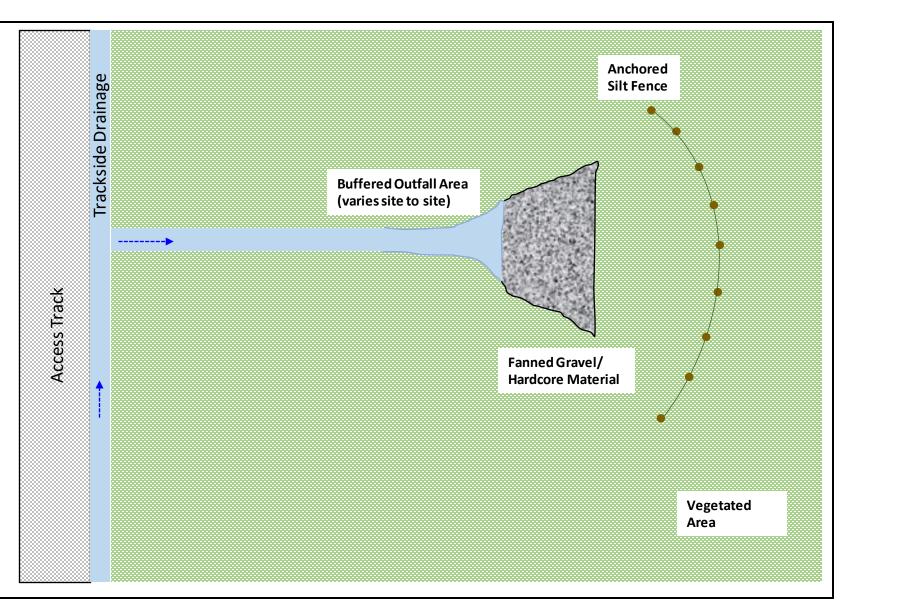
Ponds should be designed to mimic natural forms and have varying depths which can provide a range of different habitats.

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Colleen McClung
	Client:	DOL		Graduate Project Scientist
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 13 Settlement Ponds General Considerations	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh
	Revision:	02	Principal Environmental Con	Principal Environmental Consultant

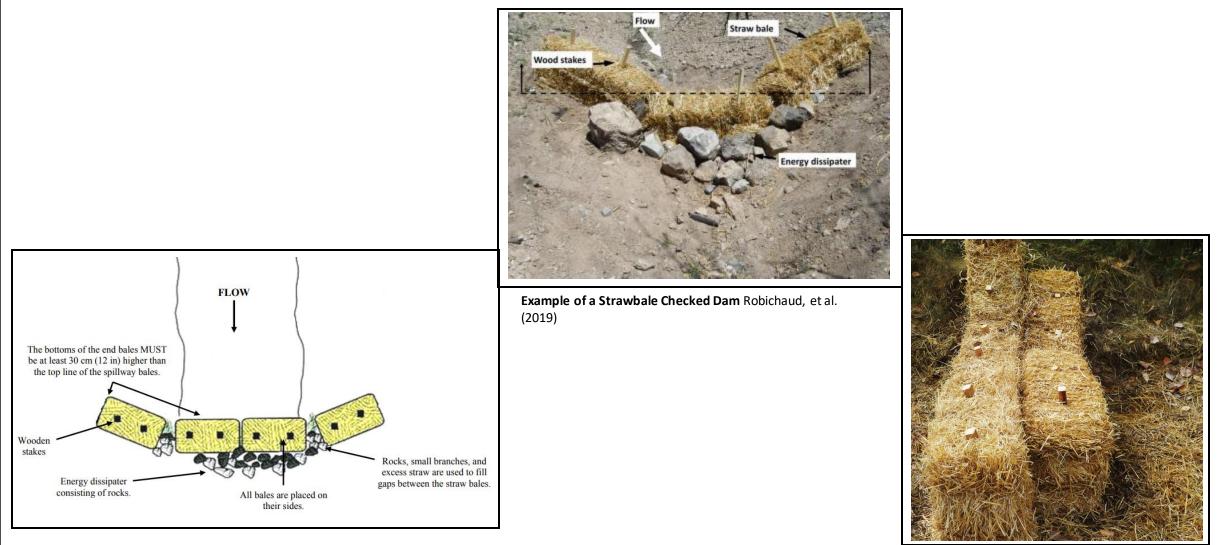


Siltbuster * (2017) "Solutions for Suspended Solids Removal: Hire, Sales & Technical Support" Siltbuster Ltd. Available at: https://www.siltbuster.co.uk/wp-content/uploads/2020/10/Solutions-for-Suspended-Solids-Removal.pdf.

Example of an oil-water separator Minerex Environmental Limited, an RSK Group company


Cross-section of oil-water separator Mohr, Kirby S. (2014)

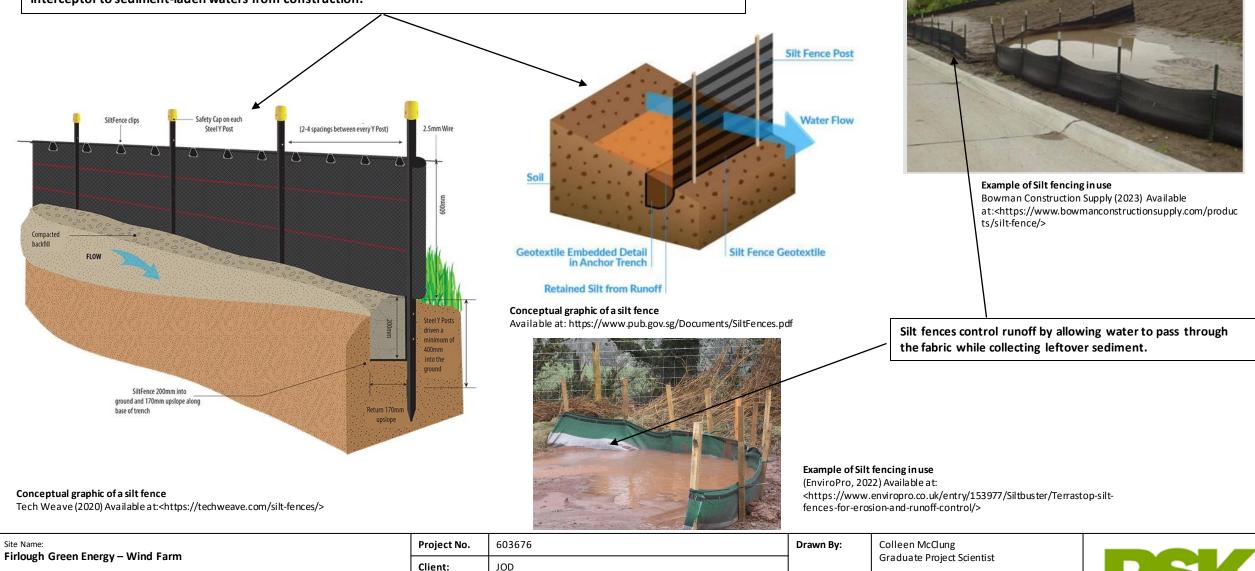
Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Colleen McClung Graduate Project Scientists	
	Client:	DOL			
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 14 Example of Settlement Tank	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh Principal Environmental Consultant	
	Revision:	02			


Family of buffered outfall with coarse aggregateCatchments and Creeks Pty Ltd., 2020;	into vege	t before		Example of a silt bag (Cascade Geotechnical Inc., 2022) Conceptual graphic of a discharge to (Janes-Bassett et al., 2016)	
Site Name: Firlough Green Energy – Wind Farm	Project No.	60676	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	
	Client:	DOL			
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 15	Date:	03/05/23	Reviewed By:	SK	
Examples of Mitigation Measures to Reduce Sodiment Transport	Revision:	02			

Examples of Mitigation Measures to Reduce Sediment Transport

Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale.

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676		Colleen McClung Graduate Project Scientist	
	Client:	JOD			
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 16 Collector Drains and Buffered Outfalls	Date:	03/05/23	Reviewed By: Sven Klinkenbergh Principal Environmental Consultant		
	Revision:	02		Principal Environmental Consultant	


Conceptual graphic of a straw bale checked dam

(Storrar, 2013)

Example of a Strawbale Checked Dam (Kawartha Conservation, 2020)

Site Name:	Project No.	603676	Drawn By:	Colleen McClung	
Firlough Green Energy – Wind Farm	Client:	DOL		Graduate Project Scientist	
Figure Name:	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh	
Appendix 9.4 – Conceptual & Information Graphics – Tile 17 Examples of Mitigation Measures to Reduce Sediment Transport – Straw Bales	Revision:	02		Principal Environmental Consultant	

Temporary barrier fabric used to retain erosion of sand, silt, and clay. Geotextile silt fencing acts as a vertical, permeable, interceptor to sediment-laden waters from construction.

03/05/23

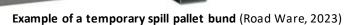
02

Date:

Revision:

Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile no. 18 Silt Fencing Reviewed By: Sven Klinkenbergh Principal Environmental Consultant

Example of a temporary spill pallet bund (Road Ware, 2023) Available at:



Example of a temporary spill pallet bund (Road Ware, 2023) Available at: <https://www.roadware.co.uk/ibc-storage-tank-pallet-spillcontainment-bund-

- - - E

stand/?sku=IBCSP&gclid=Cj0KCQiA8aOeBhCWARlsANRFrQFTsDlSEUrk4rdov 4TcTBQOwNZguishep9-yj6_qx9NexUXnAv6ONkaAq8ZEALw_wcB>

Available at: <https://www.roadware.co.uk/gsp2ibc-galvanised-steel-double-ibc-spill-pallet-

. bund/?gclid=Cj0KCQiA8aOeBhCWARIsANRFrQGfh5e3lUi9TcfRiXMAcEnilLo5gFmKlb0_dHB i7MRkIwiM0cU7F2oaAkDSEALw_wcB>

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Graduate Project Scientist	
	Client:	DOL			
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 19 Examples of Mitigation Measures During Construction Phase- Environmental 'Good Practice' of Bunded Materials	Date:	03/05/23	Reviewed By:		
	Revision:	02		Principal Environmental Consultant	

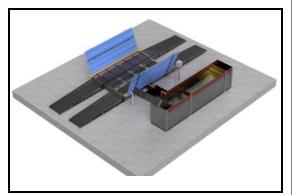
Polymer Spill Kit (Yellow Shield Ltd., 2023) Available at: https://www.yellowshield.co.uk/polymer-spill-kit

Maintenance Spill Kit

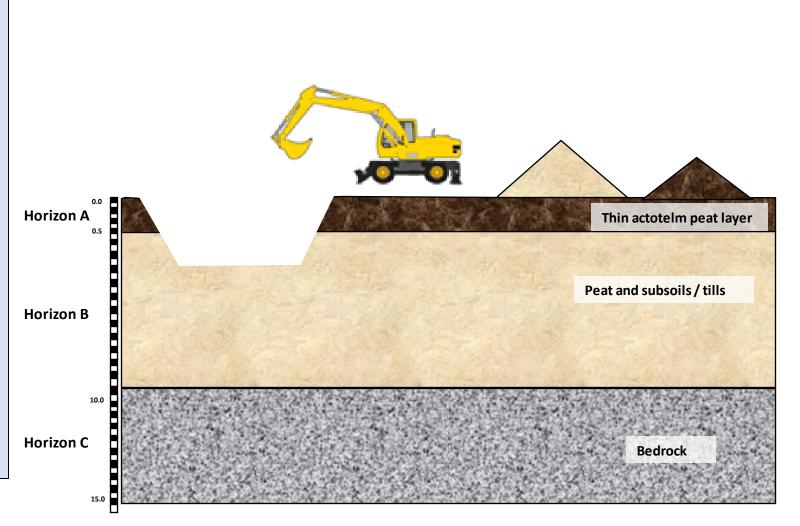
(Hyde Park Environmental, 2023) Available at: https://hydeparkenvironmental.com/1100-litre-maintenance-emergency-spillkit?utm_source=email&utm_medium=email&utm_campaign=HMK234%2F0 3.23 **Example of a spill kit deployed in surface water** (Oracle Environmental Experts Ltd., 2022) Available at: https://www.oracle-environmental.com/spill-kits

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Colleen McClung Graduate Project Scientists	RSK
	Client:	DOL			
Figure Name: Appendix 9.4 – Conceptual & Information Graphics – Tile 20 Emergency Spill Kits	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh Principal Environmental Consultant	
	Revision:	02	1		

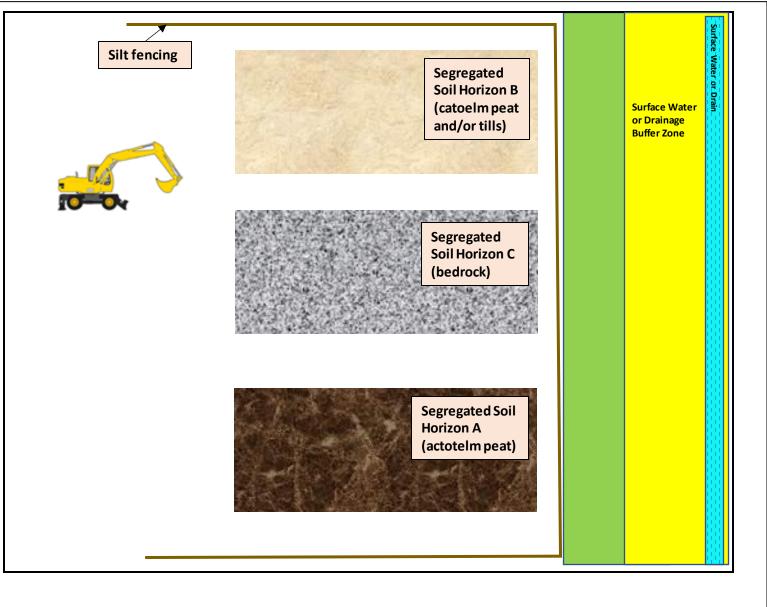
Meeds Environmental, LLC, 2012 <http://www.meedsenvironmental.co m/wheel.php>


Neptune Wash Solutions, 2023

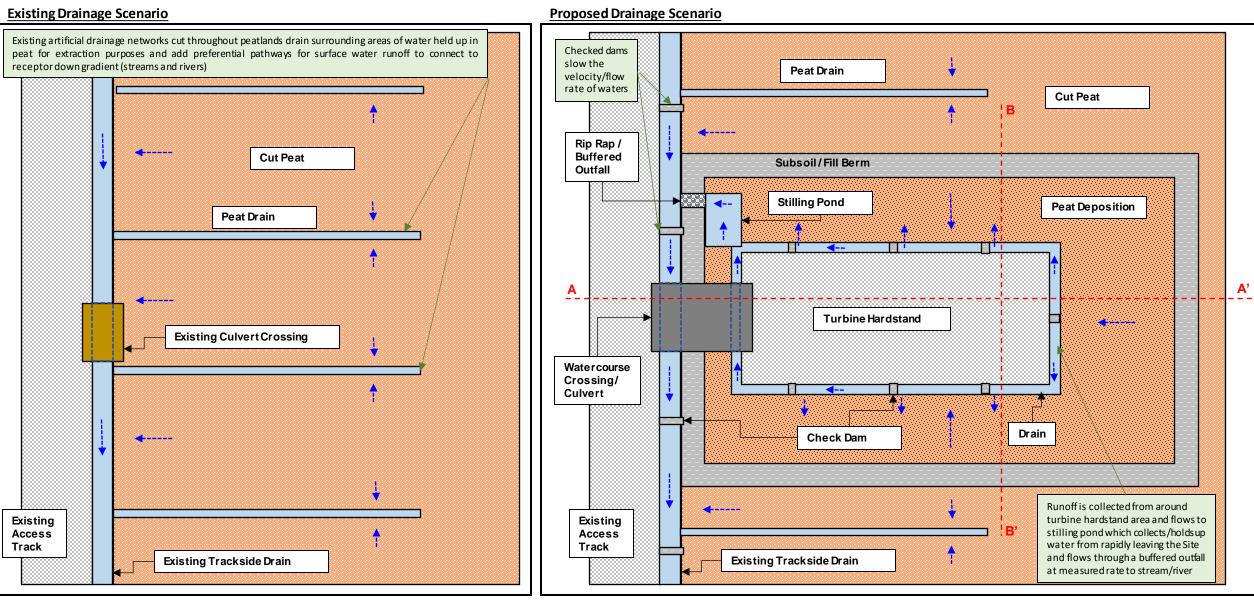
<https://www.neptunewash.com/aut omated-wheel-wash-systems/>


KKE Corporation, 2023 <https://kkewash.com/en-gb/8-4-

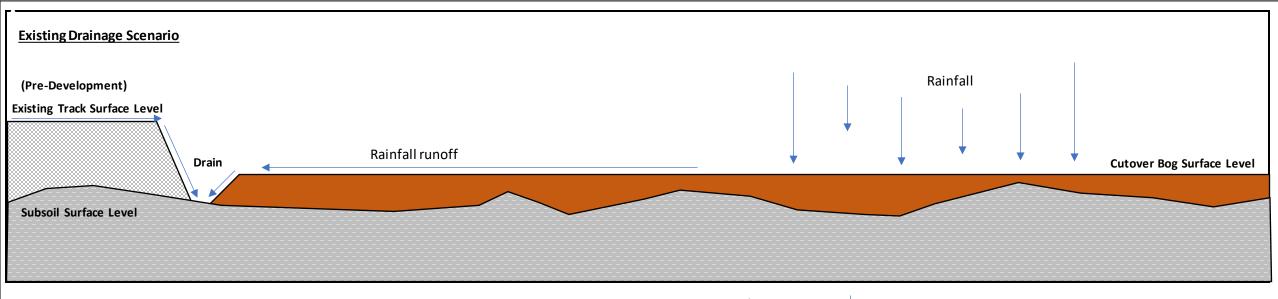
agc-portable-tire-wash/>

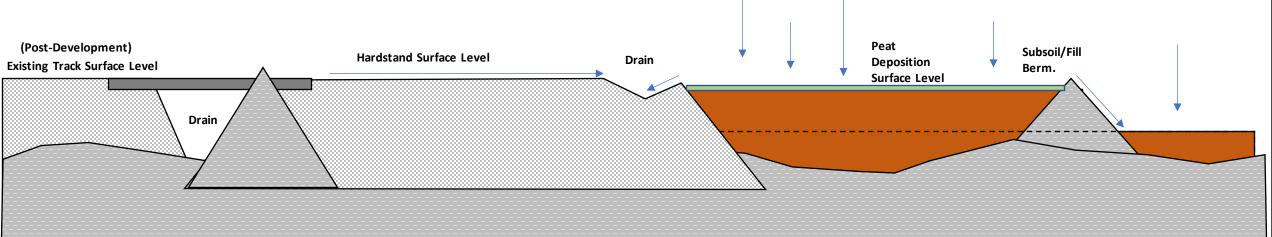

Project No. 603676 Drawn By: Colleen McClung Site Name: Firlough Green Energy – Wind Farm Graduate Project Scientist Client: JOD Figure Name: 03/05/23 **Reviewed By:** Sven Klinkenbergh Date: Appendix 9.4 - Conceptuel & Information Graphics – Tile 21 Principal Environmental Consultant **Revision:** 02 Wheel Washout Station

- The three principal materials excavated in order of depth will include topsoil at the surface, subsoils, and weathered and broken bedrock (Horizons A-C, respectfully).
- A suitably qualified geotechnical / soil scientist will supervise all excavation and the principal material types (topsoil, subsoil and bedrock) will be segregated as they arise.
- Temporary storage locations and stockpiled arisings will be managed in such a way that as to not mix induvial soils types which will, in turn will facilitate reuse on Site. Some measures which will be taken include;
 - Designated areas for each type of material which will be adequately sized based on Material Balance Assessment calculations and planned storage height.
 - Incorporating the planned movement of materials for example; actotelm peat will be the first material to be excavated and the last to be used in reinstatement.
 - Adequate space between stockpiles to reduce the potential of mixing when material is being deposited or removed, or iflocalized stability issues arise for example; stockpile collapse.
 - It is also important to mitigate against the entrainment of solids in runoff (EIAR Chapter 9 Hydrology & hydrogeology).
- In order to reduce the amount of arisings to be managed or stored at any one time during the construction phase, a Materials Balance Assessment and Materials Management Plan will be developed with a view to identifying suitable locations for permanent reinstatement as early as possible, for example; as the construction phase progresses, opportunities to move arisings to a permanent reinstatement area in one movement will be taken as often as possible.
- Backfilling in layers will be carried out at the designated reinstatement locations, this will include; use of material as fill under infrastructure, backfill around newly installed infrastructure e.g. foundations, and potentially in improvement areas.
- Infilling with material in identified soil horizons to revert these areas to baseline levels.



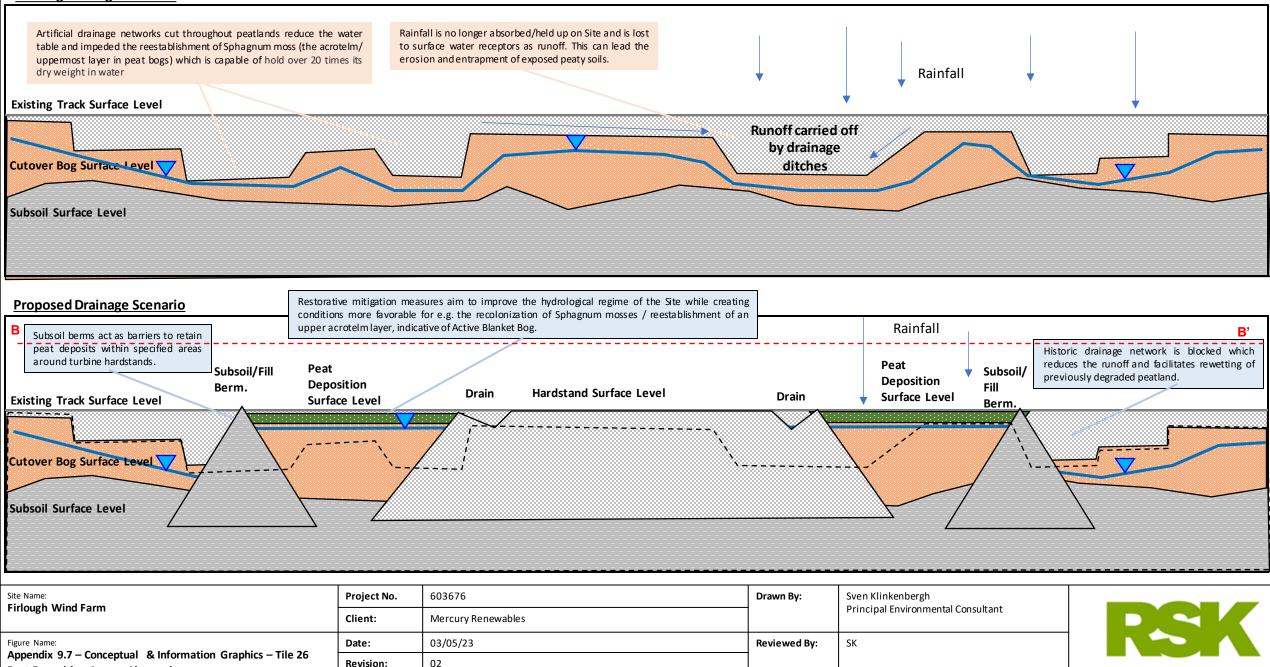
Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Colleen McClung Graduate Project Scientist	RSK
	Client:	DOD			
Figure Name: Appendix 9.4 - Conceptuel & Information Graphics – Tile 22 Conceptual Soil Horizon Graphic	Date:	03/05/23	Reviewed By:	Sven Klinkenbergh Principal Environmental Consultant	
	Revision:	02			
		02			

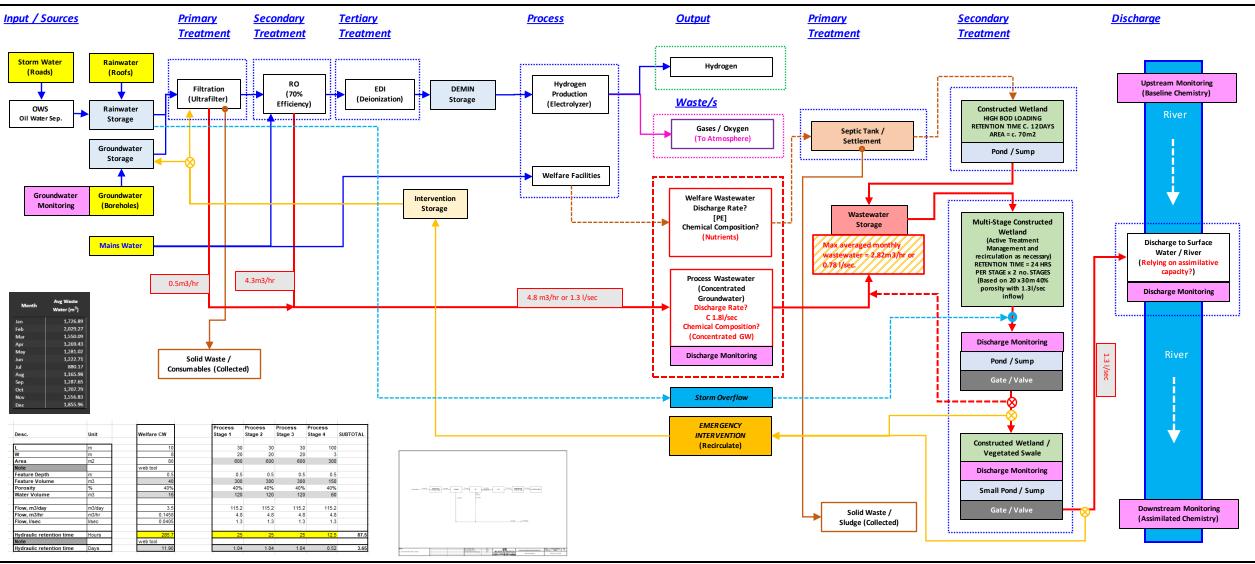

- All stockpiles will be covered with high-grade polythene sheeting to prevent run-off of rainwater and leaching of potential contaminants from the stockpiled material generation and/or the generation of dust.
- Recovered material destined for reuse off site will comply with Article 27 or Article 28 of the EPA to be classified as a by-product or as end-of-life waste, or Certificate of Registration for soils.
- Excess soils which cannot be reused will be tested and classified as a waste and disposed of appropriately.
- Temporary stockpiles will avoid areas on Site near artificial drainage channels (outside designated surface water buffer zones and will adhere to mitigation measures outline in **EIAR Chapter 9 Hydrology and Hydrogeology,** in dealing with entrainment of soils in surface water runoff.



Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	, , ,	
	Client:	DOD	Graduate Project Scientist		
Figure Name: Appendix 9.4 - Conceptuel & Information Graphics – Tile 23 Conceptual Management of Stockpiles Graphic	Date:	03/05/23	Reviewed By:	, ,	
	Revision:	02	Principal Environmental Consultant		

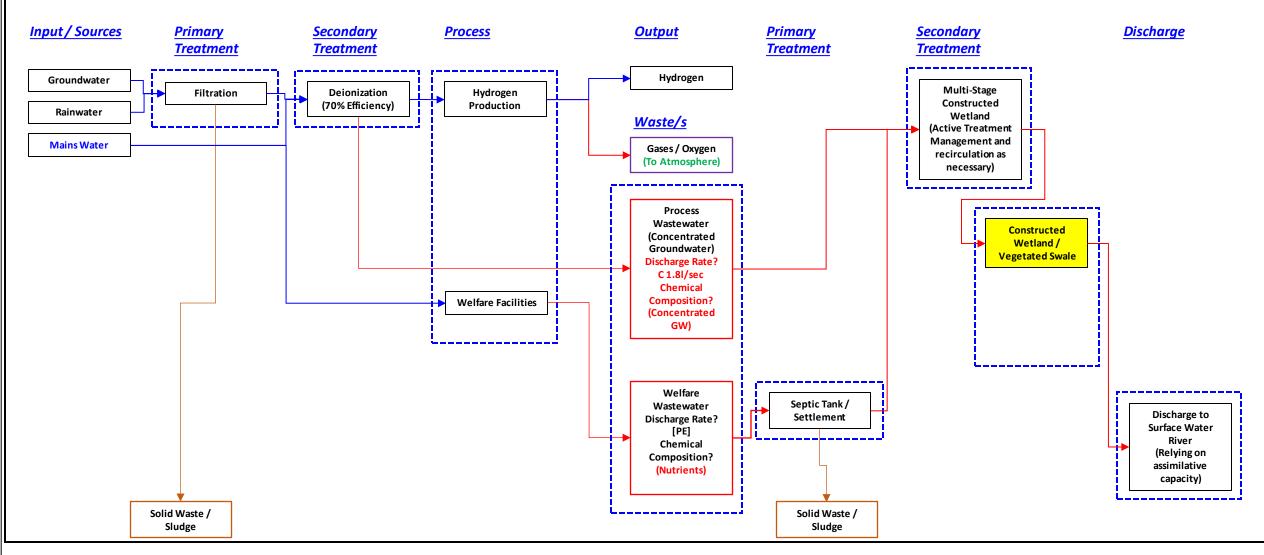
Site Name: Firlough Wind Farm	Project No. Client:	603676 Mercury Renewables	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	DCK
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 24 Examples of Conceptual Hardstand – Plan	Revision:	02			



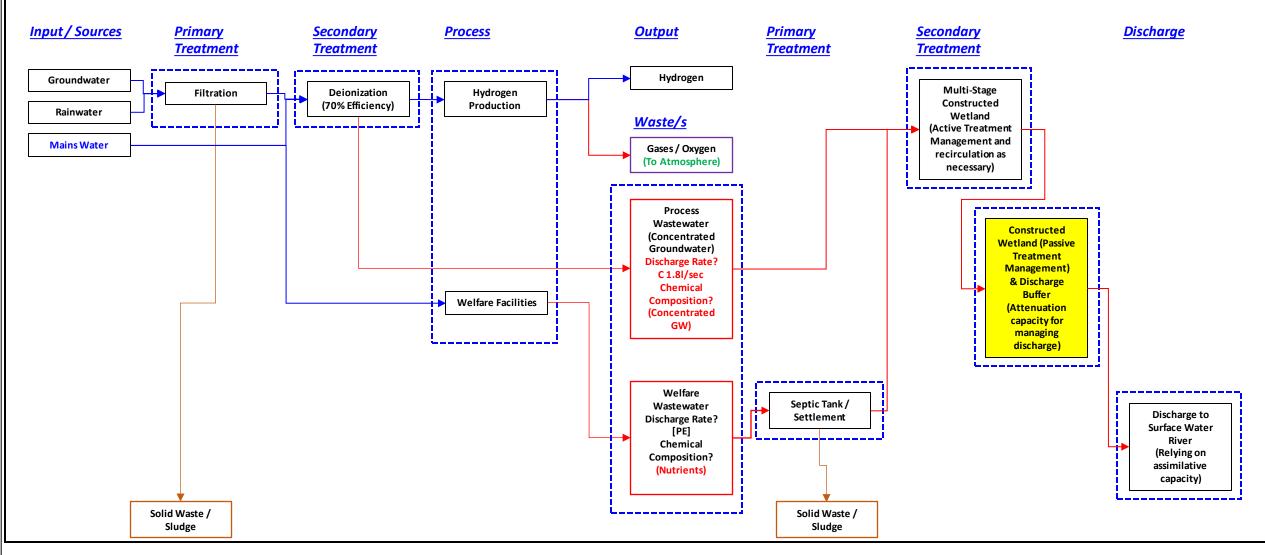

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	rawn By: Sven Klinkenbergh Principal Environmental Consultant	DCK
	Client:	JOD / Mercury Renewables			
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.6 – Conceptual & Information Graphics – Tile 25 Peat Deposition Areas – Side Profile view	Revision:	02			

Existing Drainage Scenario

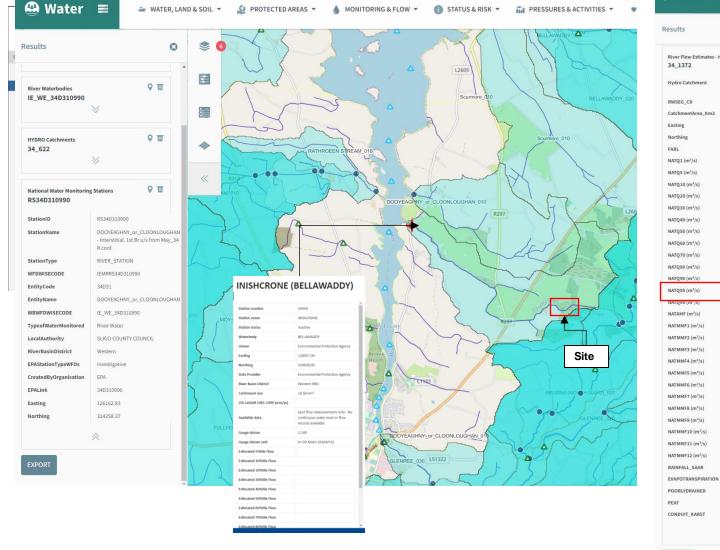
Peat Deposition Areas - Linear view

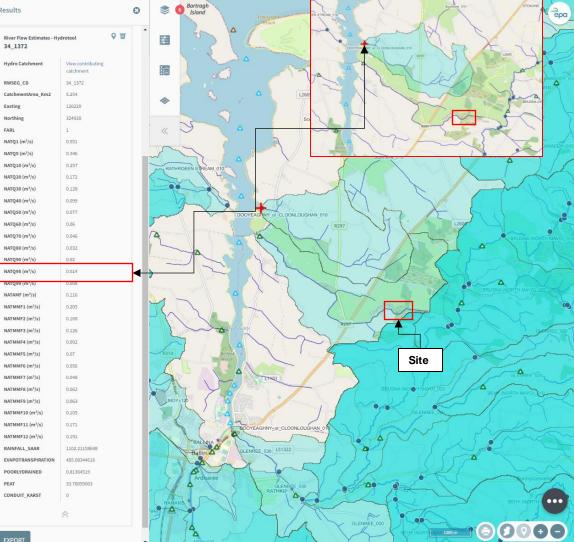


Conceptual Treatment Train Flow Diagram


Site Name: Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh		_
	Client:	Mercury Renewables		Principal Environmental Consultant		
Figure Name:	Date:	03/05/23	Reviewed By:	SK		
Tile 27 Hydrogen Site – Conceptual Process & Treatment Train Flow Diagram	Revision:	02		R&D TECHNIC/	AL REPORT P2-159/TR2	16

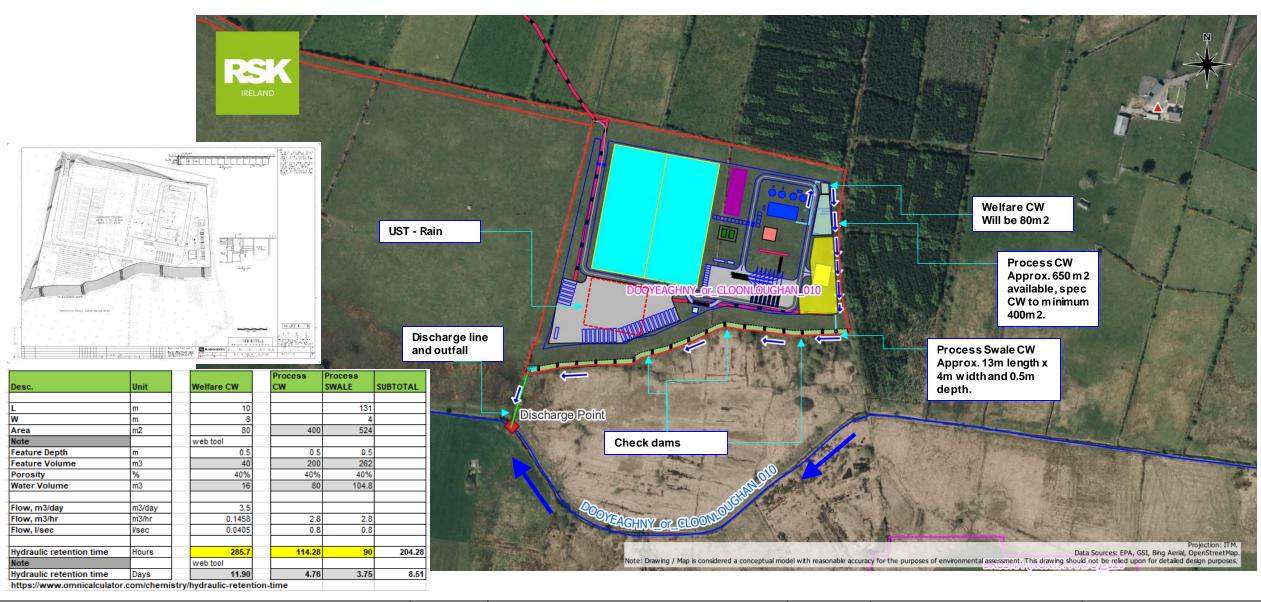
Conceptual Treatment Train Flow Diagram




Site Name: Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	DCK
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
DRAFT Conceptual Graphics Tile 28 Hydrogen Site WWT & SuDS – Configuration A	Revision:	02			

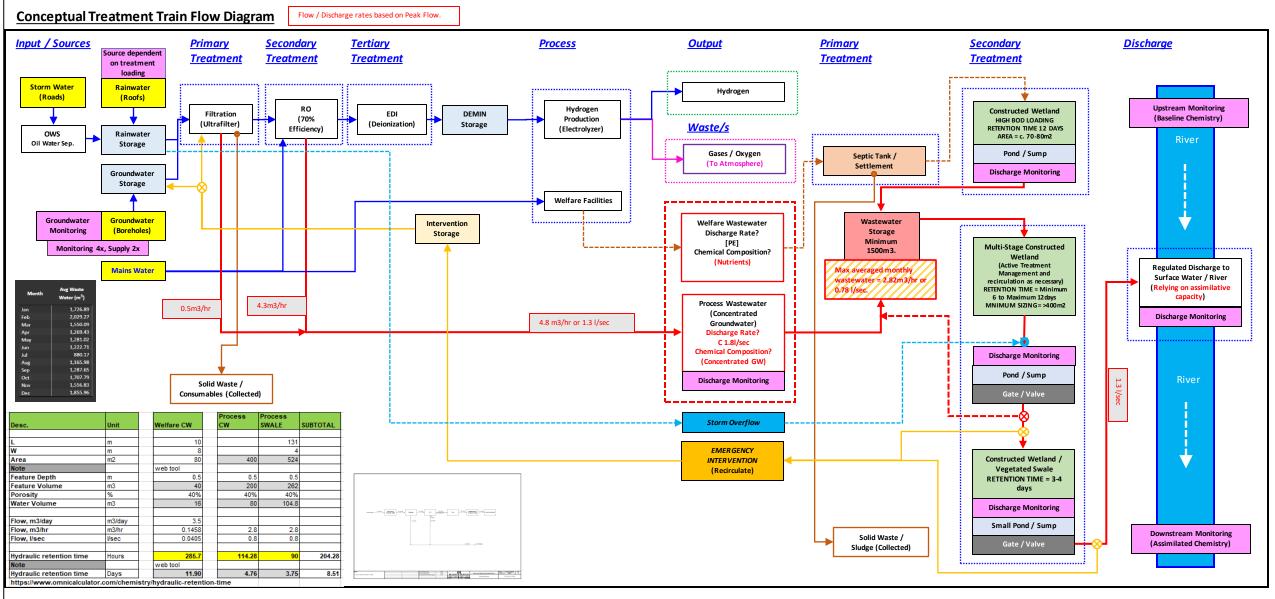
Conceptual Treatment Train Flow Diagram

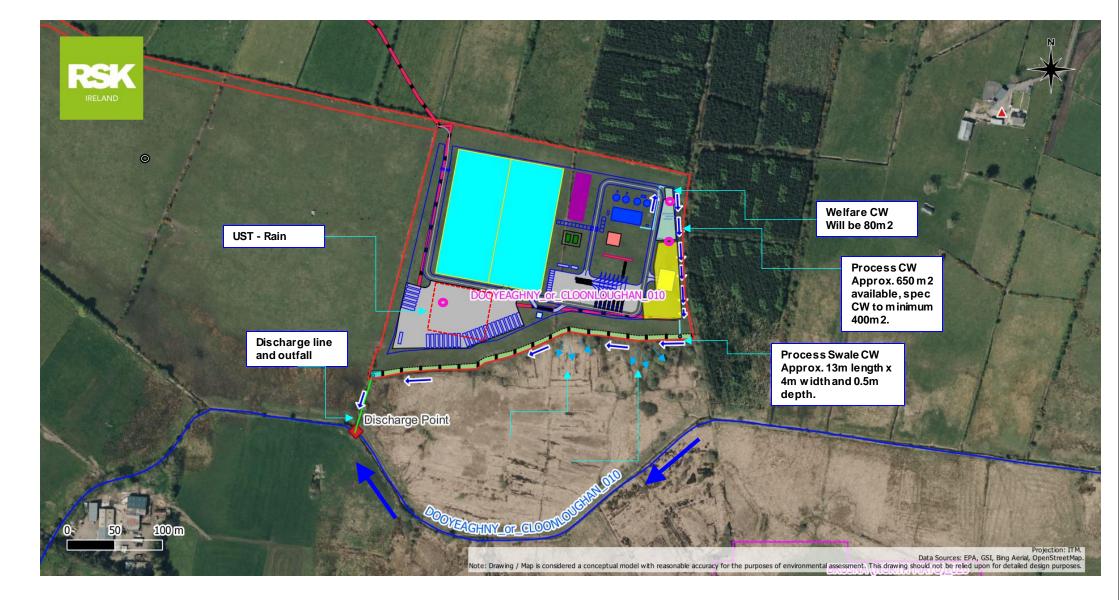
Site Name: Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	ѕк	
DRAFT Conceptual Graphics – Tile 31 Hydrogen Site WWT & SuDS – Configuration B	Revision:	02			

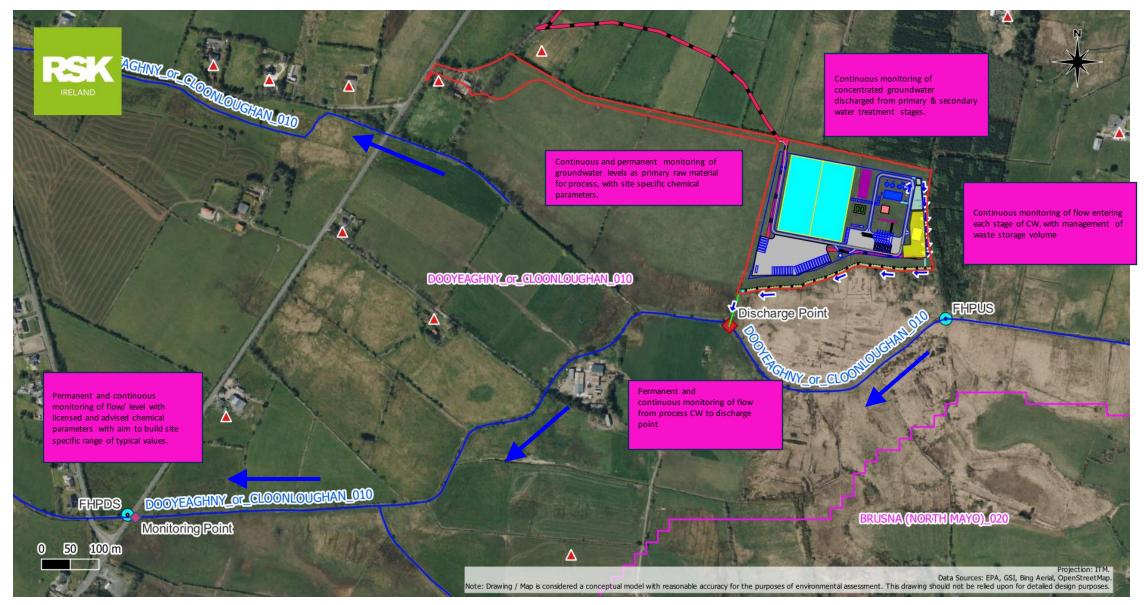


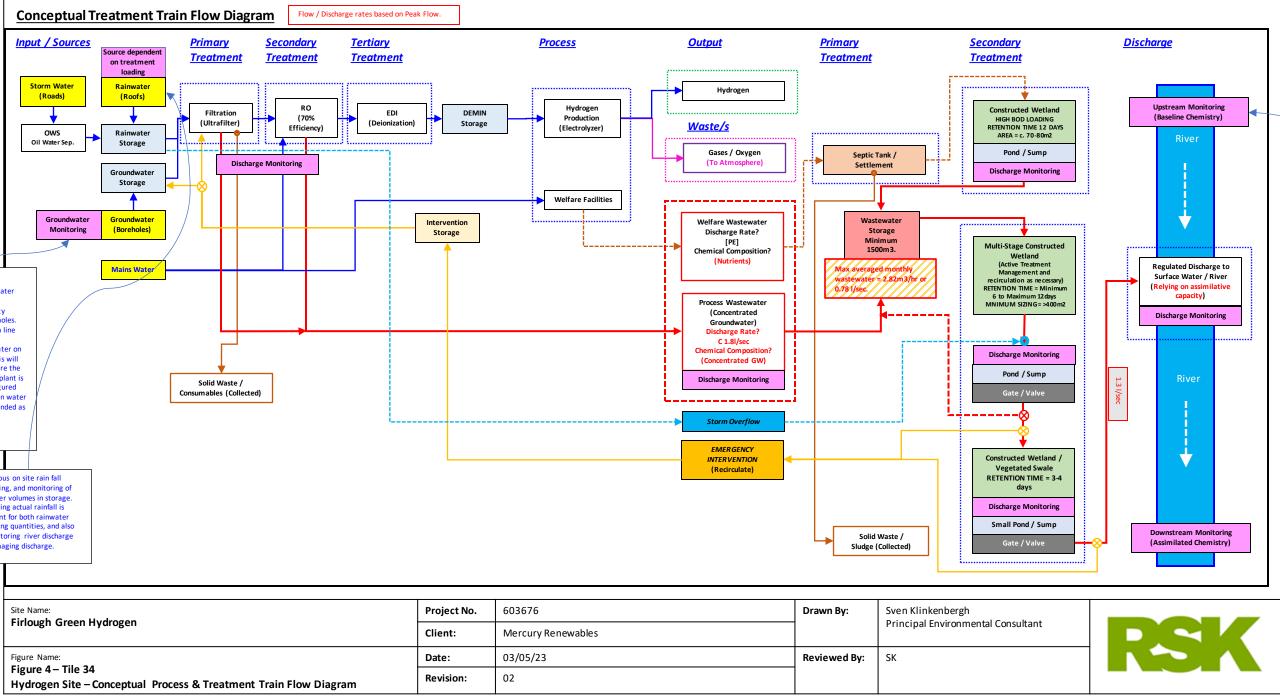
🝲 WATER, LAND & SOIL 👻 🧟 PROTECTED AREAS 👻 💧 MONITORING & FLOW 👻 🍈 STATUS & RISK 👻 📸 PRESSURES & ACTIVITIES 👻 💌 TAKING ACTION 👻

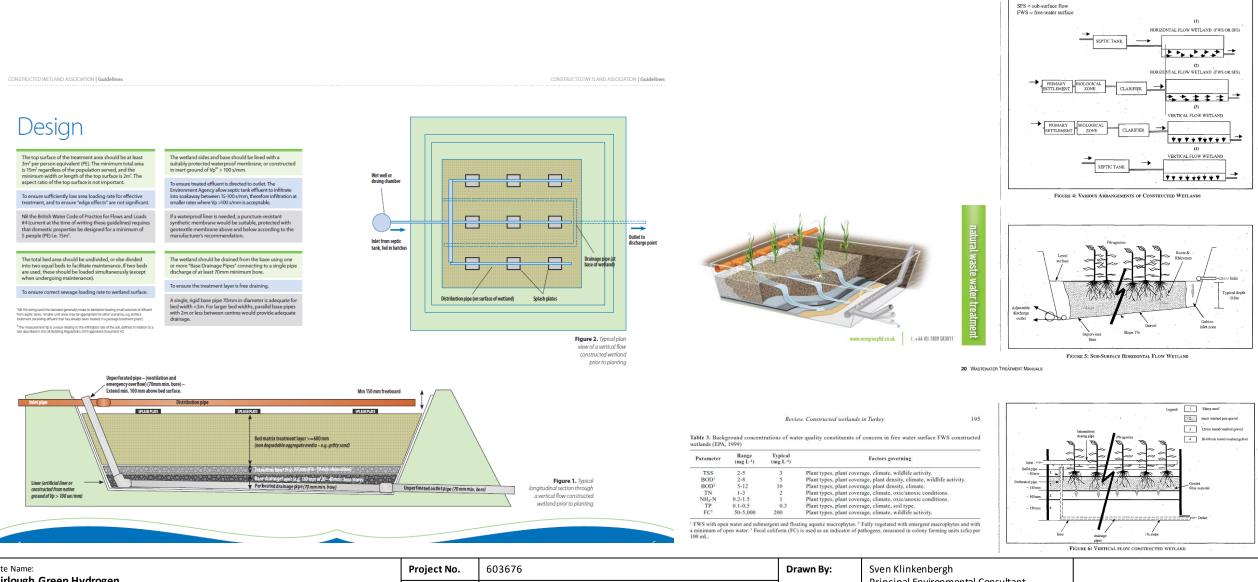
Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	
	Client:	Mercury Renewables			
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Figure 1 – Tile 29 Site Location & SW Discharge Data	Revision:	02			


🚇 Water 🔳

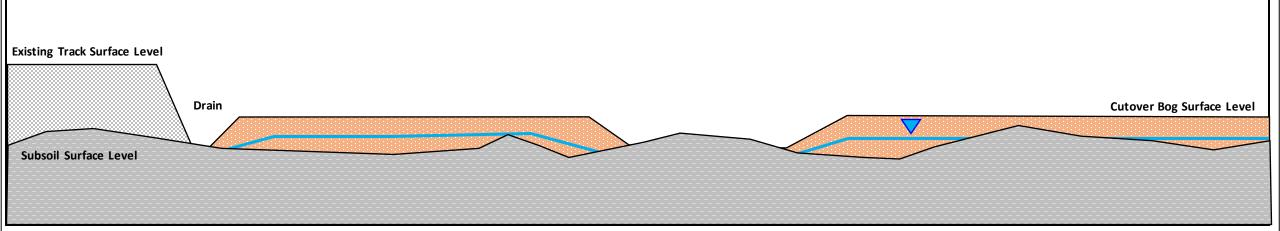

Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh
rinougii Green Hydrogen	Client:	Mercury Renewables		Principal Environmental Consultant
Figure Name:	Date:	03/05/23	Reviewed By:	SK
Figure 2 – Tile 30 Proposed Development	Revision:	02		


Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Drawn By: Sven Klinkenbergh Principal Environmental Consultant
	Client:	Mercury Renewables		
Figure Name:	Date:	03/05/23	Reviewed By:	SK
Figure 3 – Tile 31 Site Location & SW Baseline Locations	Revision:	02		


Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Figure 4 – Tile 35 Hydrogen Site – Conceptual Process & Treatment Train Flow Diagram	Revision:	02			

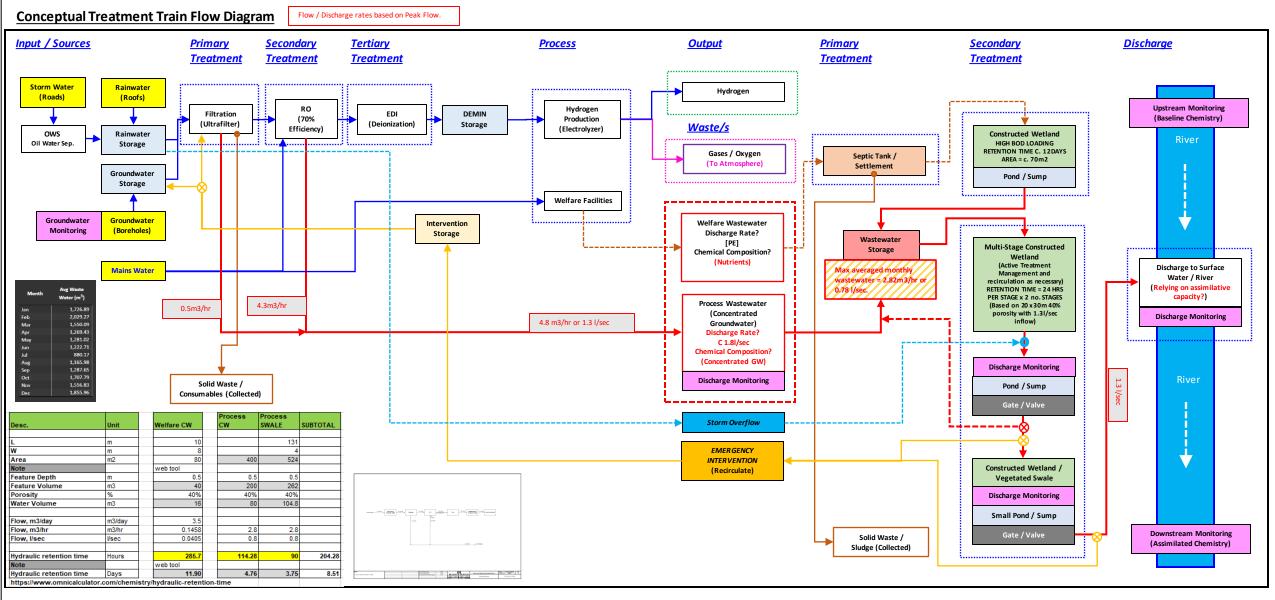

Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By: Sven Klinkenbergh Principal Environmental Consultant	
	Client:	Mercury Renewables		Principal Environmental Consultant
Figure Name:	Date:	03/05/23	Reviewed By:	SK
Figure 2 – Tile 32 Proposed Development	Revision:	02		

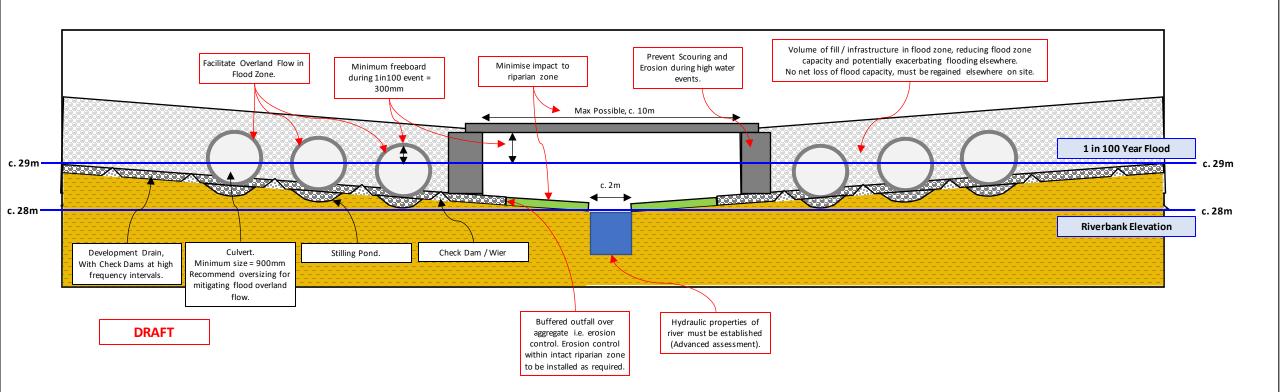
Site Name: Firlough Green Hydrogen	Project No.	603676	· · ·	Drawn By: Sven Klinkenbergh Principal Environmental Consultant
	Client:	Mercury Renewables		
Figure Name:	Date:	03/05/23	Reviewed By:	SK
Figure 3 – Tile 33 Site Location & SW Baseline Locations	Revision:	02		



5 BIOFILM (ATTACHED GROWTH) SYSTEMS 19

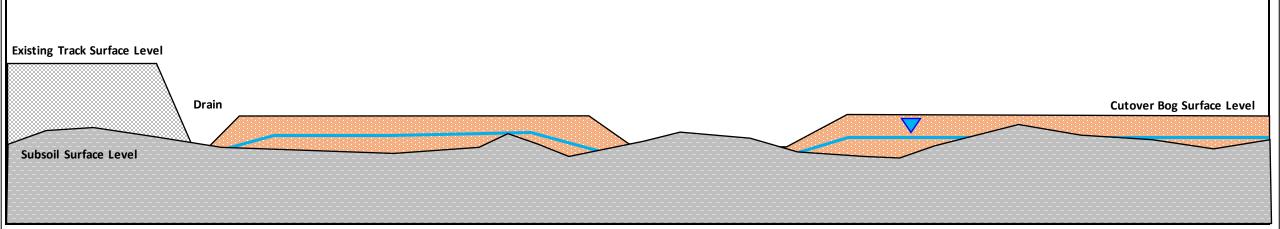
Site Name: Firlough Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Figure 5 – Tile 39 Conceptual Information Graphics on Constructed Wetland Design	Revision:	02			
	AL 1 1				




Proposed Drainage Scenario

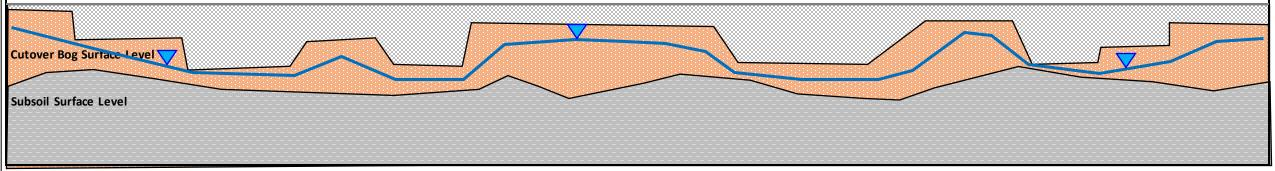
Α					A'
Existing Track Surface Level	Hardstand	Surface Level Drain		Peat Subso Deposition Berm	oil/Fill n.
Drain	<u> </u>				
Site Name: Firlough Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Conceptual Graphics – Tile 41 WF Site – Conceptual Hardstand – Section A	Revision:	02			

ARCHIVE

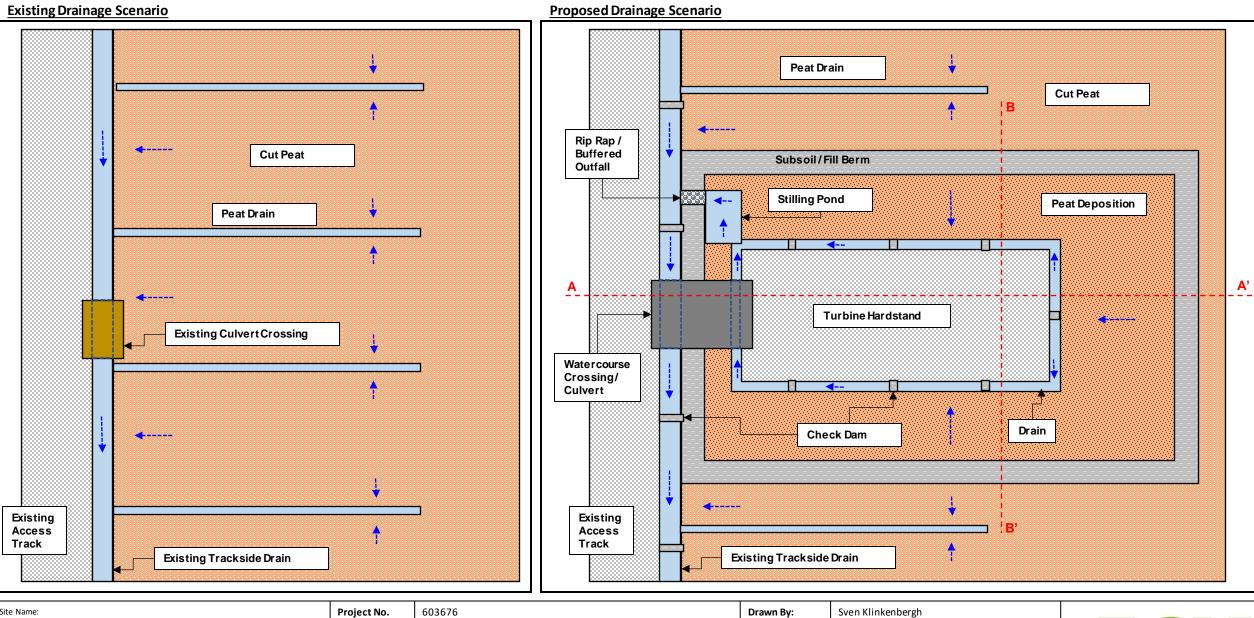


Site Name: Firlough Green Hydrogen	Project No. Client:	603676 Mercury Renewables	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	DCK
Figure Name:	Date:	28/11/2022	Reviewed By:	SK	
Figure 4 Hydrogen Site – Conceptual Process & Treatment Train Flow Diagram	Revision:	00 DRAFT			

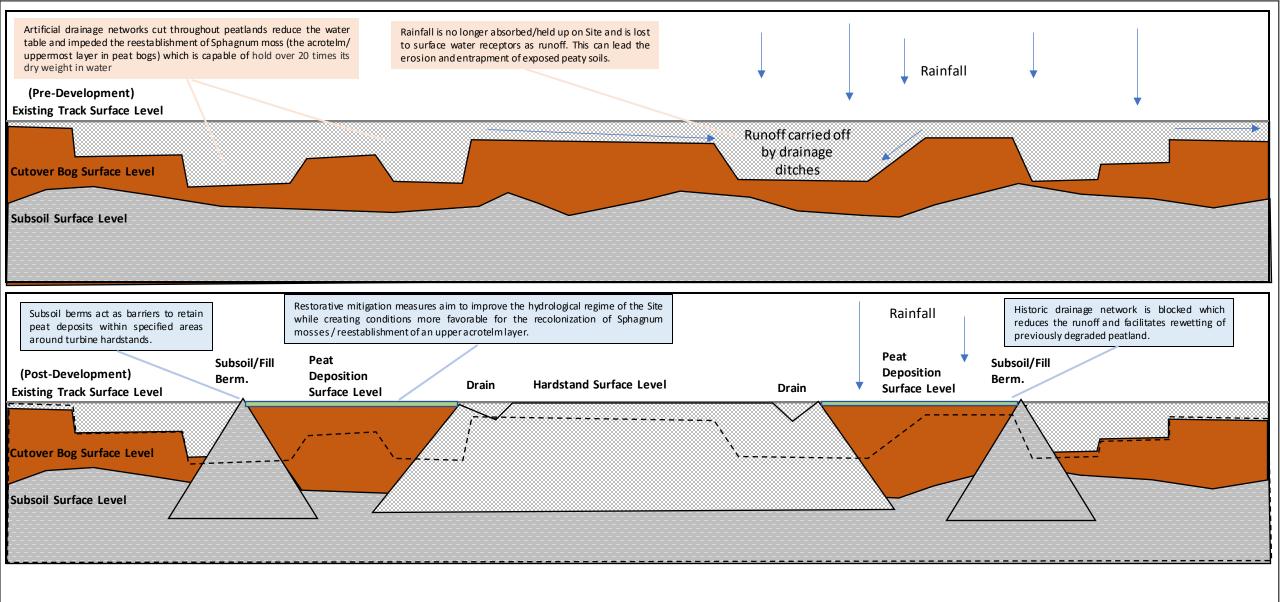
	Project No.	603008	Drawn By:	Sven Klinkenbergh	
DIAFT	Client:	JOD (Greensource)		Principal Environmental Consultant	
	Date:	01/12/2022	Reviewed By:	SK	
e XX	Revision:	00 DRAFT			
	DRAFT	DRAFT Client: Date:	DRAFT Client: JOD (Greensource) Date: 01/12/2022	DRAFT Client: JOD (Greensource) Date: 01/12/2022 Reviewed By:	DRAFT Image: Client: JOD (Greensource) Principal Environmental Consultant Date: 01/12/2022 Reviewed By: SK



Proposed Drainage Scenario


Α					Α'
Existing Track Surface Level	Hardstand	Surface Level Drain			bsoil/Fill rm.
Drain					
Site Name: Firlough Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Conceptual Graphics – Tile 27 WF Site – Conceptual Hardstand – Section A	Revision:	02			

Existing Track Surface Level



Proposed Drainage Scenario

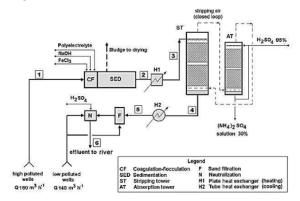
В								B'
Subs Bern Existing Track Surface Level		sition ce Level	Drain	Hardstand Surface Level	Drain	Peat Deposition Surface Level	Subsoil/Fill Berm.	
Cutover Bog Surface Level	·····	·····						
Site Name:		Project No.	603676		Drawn By:	Sven Klinkenbergh		
Firlough Wind Farm		Client:	Mercury Renewable	es		Principal Environmental Const	litant	
Figure Name:		Date:	03/05/23		Reviewed By:	SK		
Conceptual Graphics – Tile 28 WF Site – Conceptual Hardstand – Section B		Revision:	02					

Site Name: Firlough Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
Finlough wind Farm	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 24 Examples of Conceptual Hardstand – Plan	Revision:	02			

Site Name: Firlough Green Energy – Wind Farm	Project No.	603676	Drawn By:	Sven Klinkenbergh	
rindugii Green Energy – wind Farm	Client:	JOD / Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	03/05/23	Reviewed By:	SK	
Appendix 9.7 – Conceptual & Information Graphics – Tile 26 Peat Deposition Areas – Linear view	Revision:	02			

https://www.chegg.com/homework-help/questions-and-answers/old-mathjax-webview-figure-shows-simplified-diagram-physical-chemical-www.frontiersin.org/articles/10.3389/fenvs.2021.815159/full process-treatment-po-q84945924

Question: Old MathJax Webview The Figure Shows The Simplified Diagram Of The Physical-Chemical Process For The Treatment Of...


Old MathJax webview

The figure shows the simplified diagram of the physical-chemical process for the treatment of polluted groundwater. The plant is composed of two parallel lines. Highly contaminated groundwater (Q = 160 m 3 h - 1) is first treated by coagulation-flocculation, dosing 41% and 35% solutions of ferric chloride and sodium hydroxide, respectively (pH increase up to pH > 11, converting the ammonium ions into free ammonia in order to aid the subsequent stripping process). The effluent of the coagulation-flocculation step is heated to a temperature of 38°C. The stripping air (flow rate 120,000 Nm 3 h -1 for each line) flows through the towers in countercurrent to the water.

The two stripping towers (one tower per line) are made of concrete with an inner lining in polypropylene and have an internal diameter of 5.5 m and 12 m packing height (Pall rings).

The outgoing air from the stripping towers, enriched with ammonia, feeds the absorption towers (two towers per line), which are made of polypropylene, with an internal diameter of 3.6 m and a 9 m packing height. A countercurrent recirculating absorbent solution of sulfuric acid is fed to the towers. The bottom flow of the absorption towers consists of a 30% ammonium sulfate solution (approximately 2,500 kg d - 1as pure ammonium sulfate). The top air flow is recirculated to the stripping tower. The liquid effluent from the stripping towers is cooled (with heat recovery) and then filtered through the sand beds prior to the final pH neutralization and discharge to the watercourse. Weakly contaminated groundwater (Q = 140 m 3 h - 1) is fed through this final stage of filtration and neutralization, giving the added benefit of reducing the consumption of the neutralizing acid.

Calculate the material balance and energy balance of the Units (stripping tower, absorption tower and heat exchangers)

Take the missing parameters which are need to complate the calculstion with standard or closer to standard values. 🇨 frontiers 🛛 Environmental Science 💦 Sections 🗸 Articles Research Topics Editoria

N Removal in Wastewater Treatments and Marine Environments

The classical technology for N removal in wastewater treatments is based on anaerobic denitrification (Figure 1). The microbiota involved in anaerobic denitrification include several strains, such as *Pseudomonas* and *Bacillus* stains and function enzymes are usually detected as NAS, NAR, NIR, etc. (Kuypers et al., 2018). Aerobic denitrification and Anammox are also key pathways in wastewater treatments and direct ammonia oxidation (Dirammox) is a newly recovered process for ammonia removal (Mai et al., 2021; Wu, M. R. et al., 2021). The microbiota of aerobic denitrification used in wastewater treatments are frequently identified as *Alcaligenes faecalis, Zoogloea* ap. and *Shinella zoogloeoides* (Ji et al., 2015), while Anammox bacteria, *Ca.* Brocadia sinica strains, are usually observed in wastewater treatments (Speth et al., 2016). In terms of other processes implemented in wastewater treatment, e.g., OLAND, SHARON and CANON, the participated microorganisms are frequently identified as *Sphirgomonas* sp., *Ca.* Kuenenia and *Nitrosomonas* sp. (Schmidt et al., 2003).

Figure 1

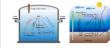
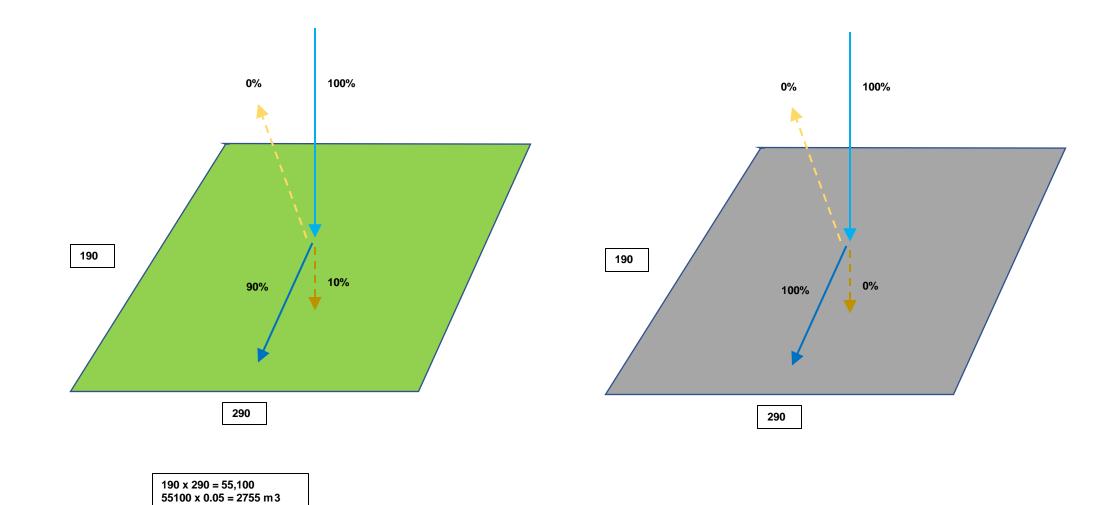
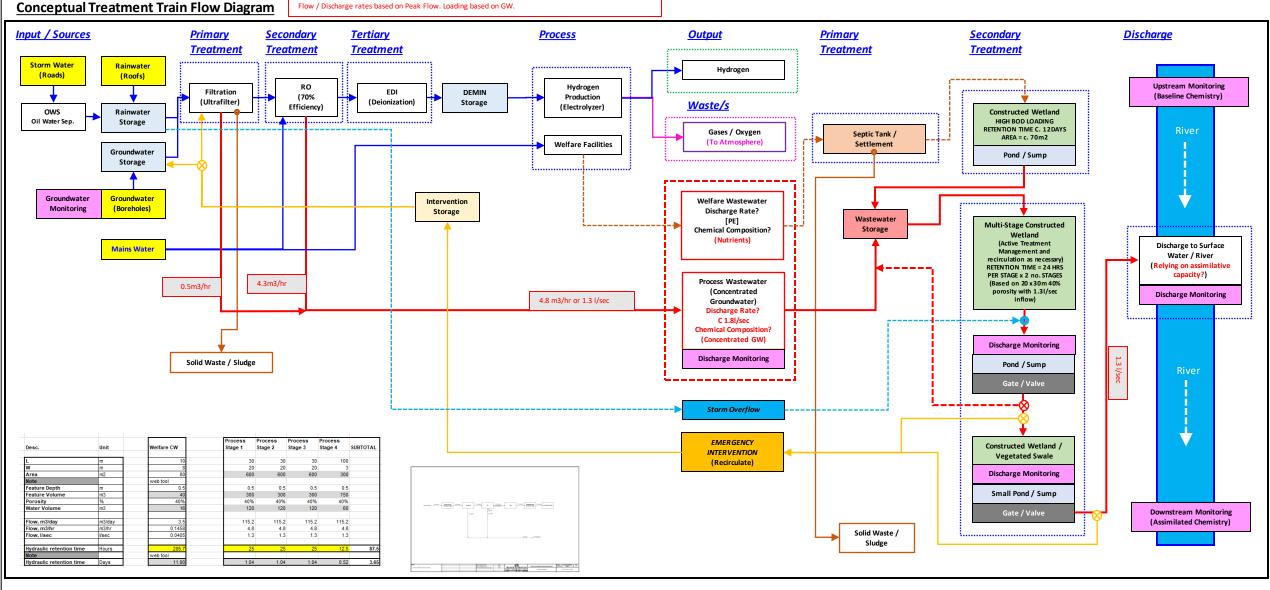
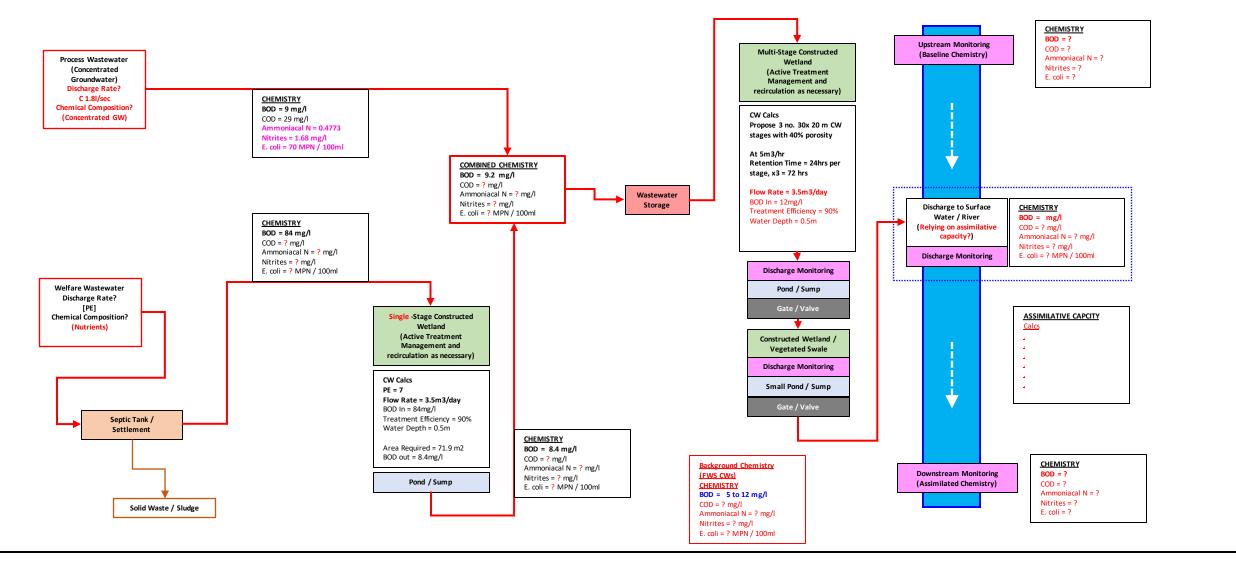
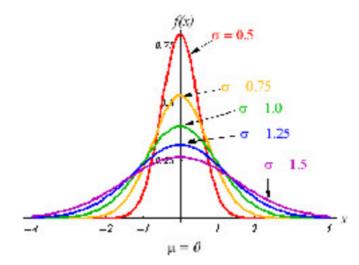




FIGURE 1. N removal process in wastewater treatments and marine systems. In wastewater treatments, N removal pathways, including nitrification/denitrification, Anammox and dissimilatory nitrate reduction to ammonium (DNRA), were outlined and different techniques (SHARON, CANON, OLAND) based on the present reactions were highlighted by colors. In marine systems, biological assimilation occurs in the surface water, while anaerobic denitrification, Anammox and DNRA prefer DO-insufficient environments, such as oxygen minimum zone and sediments. Compared with marine systems, environmental factors, such as temperature. could be well controlled in wastewater treatment tanks.



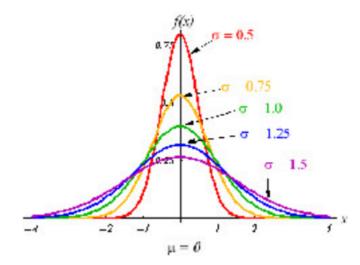
Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh
Firloiugh Green Hydrogen	Client:	Mercury Renewables		Principal Environmental Consultant
Figure Name:	Date:	28/11/2022	Reviewed By:	ѕк
Figure 3 Site Location & SW Baseline Locations	Revision:	00 DRAFT		
	an Makka sala			



Site Name: Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	28/11/2022	Reviewed By:	SK	
Conceptual Graphics Hydrogen Site – Conceptual Treatment Train Flow Diagram	Revision:	00 DRAFT			

Site Name: Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	Sven Klinkenbergh	
	Client:	Mercury Renewables		Principal Environmental Consultant	
Figure Name:	Date:	28/11/2022	Reviewed By:	SK	
DRAFT Conceptual Graphics Hydrogen Site – Conceptual Treatment Train Flow Diagram – Contam Loading	Revision:	00 DRAFT			

P90 is all about quantifying the uncertainty of annual energy yield predictions. P90 is the energy WMI predicts that a wind turbine is 90% likely to produce over an average year, given the uncertainties in the measurement, analysis and wind turbine operation. P50, on the other hand, is the average annual energy yield predicted for your site - the annual energy output you are most likely to achieve.


Investor decisions are commonly based on P90 (P95 or even P80 are sometimes used). Better instrumentation, long term data, analysis and wind turbine operation are all able to close the gap between P90 and P50, so increasing your project value.

Wind Measurement International aims to maximise P90 from initial survey to final bankable report. Our range of services offer a consistent P50/P90 through the energy valuation matched to your risk/cost requirements.

P50/ P90

https://greensolver.net/wind-p50-and-p90/#:~:text=The%20P50%20figure%20is%20the,90%25%20of%20the%20projects%20life.

Site Name:	Project No.	603676	Drawn By:	Sven Klinkenbergh
Firloiugh Green Hydrogen	Client:	Mercury Renewables	Principal Environmental Consultant	
Figure Name:	Date:	28/11/2022	Reviewed By:	SK
Figure 3 Site Location & SW Baseline Locations	Revision:	00 DRAFT		

P90 is all about quantifying the uncertainty of annual energy yield predictions. P90 is the energy WMI predicts that a wind turbine is 90% likely to produce over an average year, given the uncertainties in the measurement, analysis and wind turbine operation. P50, on the other hand, is the average annual energy yield predicted for your site - the annual energy output you are most likely to achieve.

Investor decisions are commonly based on P90 (P95 or even P80 are sometimes used). Better instrumentation, long term data, analysis and wind turbine operation are all able to close the gap between P90 and P50, so increasing your project value.

Wind Measurement International aims to maximise P90 from initial survey to final bankable report. Our range of services offer a consistent P50/P90 through the energy valuation matched to your risk/cost requirements.

P90 in wind measurement:

http://www.windmeasurementinternational.com/wind-analysis/p90-wind_anyalsis.php#:~:text=P90%20is%20the%20energy%20WMI,analysis%20and%20wind%20turbine%20operation.

Firloiugh Green Hydrogen	Project No.	603676	Drawn By:	y: Sven Klinkenbergh Principal Environmental Consultant
	Client:	Mercury Renewables		
Figure Name:	Date:	28/11/2022	Reviewed By:	SK
Figure 3 Site Location & SW Baseline Locations	Revision:	00 DRAFT		